
HIKVISION PSIA扩展协议

DVR&NVR扩展部分分

Version 0.5

Revision 1

22 December 2010

Revision History Description Date By
Version 0.5 Revision 1 Initial version 2010-12-22 孟宏

Disclaimer

THIS DOCUMENT IS PROVIDED "AS IS" WITH NO WARRANTIES
WHATSOEVER, INCLUDING

ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS

FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE

ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Without

limitation, HIKVISION disclaims all liability, including liability for infringement of

any proprietary rights, relating to use of information in this specification and to

the implementation of this specification, and HIKVISION disclaims all liability for

cost of procurement of substitute goods or services, lost profits, loss of use, loss of

data or any incidental, consequential, direct, indirect, or special damages, whether

under contract, tort, warranty or otherwise, arising in any way out of use or reliance

upon this specification or any information herein.

Except that a license is hereby granted by HIKVISION to copy and reproduce this

specification for internal use only.

Any marks and brands contained herein are the property of their

respective owners.

Content

Disclaimer .. 1

Content... 2

1 Introduction .. 6

2 Conformance... 6

3 Glossary and Relationship... 6

3.1 Glossary of Terms .. 6

3.2 Relationship of Entities and Terminology ... 7

3.3 Arbitrary Stream and Track Associations .. 9

3.4 XML Reserved Characters .. 9

4 Resource Structure ... 9

5 General Rules, Guidelines ..11

5.1 DVR & NVR Design Considerations .. 12

5.2 Input Source Management (Remote Camera Configuration) 14

6 ContentMgmt Base Service ... 16

6.1 PSIA/ContentMgmt/profile ... 16

6.1.1 PSIA/ContentMgmt/profile Schema Definition .. 18

6.2 PSIA/ContentMgmt/sourceSupport .. 18

6.2.1 Source Support XML Schema Definition .. 20

6.2.2 Access and Operation of Source Support... 20

7 PSIA/ContentMgmt/record ... 26

7.1 PSIA/ContentMgmt/record/storageMounts ... 26

7.2 PSIA/ContentMgmt/record/profile... 28

7.2.1 PSIA/ContentMgmt/record/profile Schema Definition 28

7.3 PSIA/ContentMgmt/record/tracks .. 29

7.3.1 Custom Configuration Data (Extensions) .. 31

7.3.2 PSIA-REST List-Entry <id> Creation method ... 31

7.3.3 Streaming URL implied in <Track> configuration 31

7.3.4 Recording Source Description ... 31

7.3.5 Recording Schedule overview ... 32

7.3.6 Track Description NVP .. 32

7.3.7 <MetadataEvtCfgList> (used in EDR Mode) ... 34

7.3.8 PSIA/ContentMgmt/record/tracks .. 34

7.3.9 PSIA/ContentMgmt/record/tracks/<id>... 35

7.3.10 Example Track Creation Message Exchange ... 35

7.3.11 Track List Schema ... 40

7.4 PSIA/ContentMgmt/record/control... 40

7.4.1 PSIA/ContentMgmt/record/control/manual/start 40

7.4.2 PSIA/ContentMgmt/record/control/manual/stop....................................... 41

7.4.3 PSIA/ContentMgmt/record/control/lock.. 41

7.5 PSIA/ContentMgmt/record/metadata .. 43

8 PSIA/ContentMgmt/schedules ... 44

8.1 PSIA/ContentMgmt/schedules/<ScheduleBlockGUID> 44

9 PSIA/ContentMgmt/search ... 46

9.1 PSIA/ContentMgmt/search/profile... 46

9.1.1 PSIA/ContentMgmt/search/profile Schema Definition 47

9.2 PSIA/ContentMgmt/search ... 47

9.2.1 Search Query Parameter Schema Definition .. 50

9.2.2 Search Query Results Schema ... 52

10 PSIA/ContentMgmt/status .. 56

10.1 PSIA/ContentMgmt/status/volumes ... 57

10.1.1 PSIA/ContentMgmt/status/volume Attr ibute Definitions 60

10.1.2 PSIA/ContentMgmt/status/volume XSD ... 61

10.2 PSIA/ContentMgmt/status/sources .. 61

10.2.1 PSIA/ContentMgmt/status/sources Status Attributes................................. 65

10.2.2 PSIA/ContentMgmt/status/sources XSD ... 66

10.3 PSIA/ContentMgmt/status/channels ... 66

10.3.1 PSIA/ContentMgmt/status/channels Status Attributes 69

10.3.2 PSIA/ContentMgmt/status/channels XML Schema Definition 70

10.4 PSIA/ContentMgmt/status/tracks ... 71

10.4.1 PSIA/ContentMgmt/status/tracks Status Attributes 72

10.4.2 PSIA/ContentMgmt/status/tracks XSD ... 74

11 Streaming and Playback.. 75

11.1 Streaming URIs ... 75

11.1.1 Live Streams ... 75

11.1.2 Archive Streams .. 75

11.1.3 Source-based Streaming ... 76

11.1.4 Time-related Streaming .. 77

11.2 Streaming Configuration and Status ... 77

11.2.1 Streaming Status .. 78

11.2.2 QoS Parameter for playback (new v1.1) .. 78

11.3 Streaming Operations ... 80

11.4 Playback ... 81

11.4.1 Playback Requirements .. 81

11.4.2 Usage patterns ... 82

11.4.3 Use of RTSP ... 82

11.4.4 RTP header extension... 82

11.4.5 Initiating Playback ... 85

11.4.6 Reverse replay... 89

11.4.7 Currently recording footage... 89

11.4.8 End of footage ... 90

11.4.9 Go To Time .. 91

12 Polymorphic/Poly-temporal Track Support (new v1.1) ... 92

12.1 Poly-attribute Tracks and Stream Management .. 93

12.1.1 Poly-attribute Tracks and Streams .. 93

12.1.2 Track attributes.. 94

12.2 Poly-attribute Stream Description .. 96

12.2.1 SDP Session Section .. 96

12.2.2 SDP Media Section .. 97

12.2.3 Stream Session Management ..101

13 PSIA/Security ..102

14 PSIA/Custom/SelfExt/ContentMgmt/DynVideo..103

14.1 PSIA/Custom/SelfExt/ContentMgmt/DynVideo/inputs ..103

14.2 PSIA/Custom/SelfExt/ContentMgmt/DynVideo/inputs/search103

14.3 PSIA/Custom/SelfExt/ContentMgmt/DynVideo/inputs/channels104

14.4 PSIA/Custom/SelfExt/ContentMgmt/DynVideo/inputs/channels/status105

14.5 PSIA/Custom/SelfExt/ContentMgmt/DynVideo/inputs/channels/<ID>105

14.6 PSIA/Custom/SelfExt/ContentMgmt/DynVideo/inputs/channels/<ID>/password106

14.7 PSIA/Custom/SelfExt/ContentMgmt/DynVideo/inputs/channels/<ID>/netParam107

14.8 PSIA/Custom/SelfExt/ContentMgmt/DynVideo/inputs/channels/<ID>/status107

14.9 PSIA/Custom/SelfExt/ContentMgmt/DynVideo/inputs/channels/<ID>/focus............108

14.10 PSIA/Custom/SelfExt/ContentMgmt/DynVideo/inputs/channels/<ID>/iris109

14.11 PSIA/Custom/SelfExt/ContentMgmt/DynVideo/inputs/channels/<ID>/lens109

14.12 PSIA/Custom/SelfExt/ContentMgmt/DynVideo/inputs/channels/<ID>/overlays 109

14.13

 PSIA/Custom/SelfExt/ContentMgmt/DynVideo/inputs/channels/<ID>/overlays/t

ext 110

14.14

 PSIA/Custom/SelfExt/ContentMgmt/DynVideo/inputs/channels/<ID>/overlays/t

ext/<ID> 110

14.15

 PSIA/Custom/SelfExt/ContentMgmt/DynVideo/inputs/channels/<ID>/overlays/i

mage 111

14.16

 PSIA/Custom/SelfExt/ContentMgmt/DynVideo/inputs/channels/<ID>/overlays/i

mage/<ID> 111

14.17

 PSIA/Custom/SelfExt/ContentMgmt/DynVideo/inputs/channels/<ID>/privacyM

ask 112

14.18

 PSIA/Custom/SelfExt/ContentMgmt/DynVideo/inputs/channels/<ID>/privacyM

ask/regions 112

14.19

 PSIA/Custom/SelfExt/ContentMgmt/DynVideo/inputs/channels/<ID>/privacyM

ask/regions/<ID>... 113

15 PSIA/Custom/SelfExt/ContentMgmt/ZeroVideo ... 114

15.1 PSIA/Custom/SelfExt/ContentMgmt/ZeroVideo/channels 114

15.2 PSIA/Custom/SelfExt/ContentMgmt/ZeroVideo/channels/<ID> 115

15.3 PSIA/Custom/SelfExt/ContentMgmt/ZeroVideo/channels/<ID>/enlarge 115

15.4 PSIA/Custom/SelfExt/ContentMgmt/ZeroVideo/channels/<ID>/switchScreen 116

15.5 PSIA/Custom/SelfExt/ContentMgmt/ZeroVideo/channels/<ID>/previewCfg............ 116

16 PSIA/Custom/SelfExt/ContentMgmt/ZeroStreaming ... 117

16.1 PSIA/Custom/SelfExt/ContentMgmt/ZeroStreaming/status 117

16.2 PSIA/Custom/SelfExt/ContentMgmt/ZerStreaming/channels.................................. 117

16.3 PSIA/Custom/SelfExt/ContentMgmt/ZeroStreaming/channels/<ID> 118

16.4 PSIA/Custom/SelfExt/ContentMgmt/ZeroStreaming/channels/<ID>/status 119

17 PSIA/Custom/SelfExt/ContentMgmt/DynStreaming ..120

17.1 PSIA/Custom/SelfExt/ContentMgmt/DynStreaming/status.....................................120

17.2 PSIA/Custom/SelfExt/ContentMgmt/DynStreaming/channels 120

17.3 PSIA/Custom/SelfExt/ContentMgmt/DynStreaming/channels/<ID>122

17.4 PSIA/Custom/SelfExt/ContentMgmt/DynStreaming/channels/<ID>/status124

17.5 PSIA/Custom/SelfExt/ContentMgmt/DynStreaming/channels/<ID>/http124

17.6 PSIA/Custom/SelfExt/ContentMgmt/DynStreaming/channels/<ID>/picture126

17.7 PSIA/Custom/SelfExt/ContentMgmt/DynStreaming/channels/<ID>/requestKeyFrame 127

18 PSIA/Custom/SelfExt/ContentMgmt/Storage ...128

18.1 PSIA/Custom/SelfExt/ContentMgmt/Storage/hdd ...128

18.2 PSIA/Custom/SelfExt/ContentMgmt/Storage/hdd/<ID>...128

18.3 PSIA/Custom/SelfExt/ContentMgmt/Storage/hdd/<ID>/format129

18.4 PSIA/Custom/SelfExt/ContentMgmt/Storage/hdd/<ID>/formatStatus......................129

18.5 PSIA/Custom/SelfExt/ContentMgmt/Storage/nas ..130

18.6 PSIA/Custom/SelfExt/ContentMgmt/Storage/nas/<ID> ...130

18.7 PSIA/Custom/SelfExt/ContentMgmt/Storage/nas/<ID>/format131

18.8 PSIA/Custom/SelfExt/ContentMgmt/Storage/nas/<ID>/formatStatus131

18.9 PSIA/Custom/SelfExt/ContentMgmt/Storage/group ..131

18.10 PSIA/Custom/SelfExt/ContentMgmt/Storage/diskGroup/<ID>132

19 PSIA/Custom/SelfExt/ContentMgmt/download ..133

20 Metadata Identity String(MIDS; “metaID”) ..133

20.1 MIDS Field Definitions ...133

Requirement Level ..134

20.1.1 Domain:event.hikvision.com ..136

20.1.2 Domain:log.hikvis ion.com ...136

21 PSIA/Custom/SelfExt/ContentMgmt/logSearch ..139

22 PSIA/Custom/SelfExt/Bond ...141

22.1 PSIA/Custom/SelfExt/Bond/<ID>...141

23 PSIA/Custom/SelfExt/Holiday ...143

23.1 PSIA/Custom/SelfExt/Holiday/ID ...143

24 Appendix A: Codec Type Dictionary...145

1 Introduction

This document specifies an interface that enables physical secu rity and video

management systems to communicate with a Recording and Content

Management(RaCM) device in a standardized way.

2 Conformance

The RaCM Device wil l host PSIA compliant services and adhere to the PSIA Service

Model.

3 Glossary and Relationship

3.1 Glossary of Terms

• Channel = handle/tag for an input source (port or stream); see IPMD

spec for usage. For a DVR, a “channel” is the identifier, or handle, used

to identify a local input stream (which may also be accessible to remote

entities via a local /PSIA/Streaming/channel/<id> Resource). The

“stream” may contain Video, Audio, and/or Metadata. For an NVR, a

“channel” is used to identify a remote media stream which, if from an

IPMD, should come from the remote device‟s

/PSIA/Streaming/channels/<id> Resource. Within the RaCM Device,

such input „channels‟ are not explicitly configured. The term

„channel‟ is used as a guiding principle and logical construct. There is

no single, explicit RaCM Resource that exists for the purposes to allow

an external entity to manage (create, update, delete) „channels‟. However

a „channel‟ is implicitly created when a Track is created to record from a

„source‟ (local or remote). In effect, when a Track is created, the

<SourceDescriptor> creates a logical input „channel‟. If a 2nd Track is

created that records from the same source (i.e. same Device and stream

URL), then it is simply referring to the same logical „channel‟ that the 1st

Track referred to. These logical „channels‟ are visible (Read-Only

fashion) via the “/PSIA/ContentMgmt/status/channels” Resource. It

is also possible to search based on these „channels‟ via

“/PSIA/ContentMgmt/search” Resource.

• Track = Virtual storage container for a specific type of content (e.g.

MPEG4, G.726, etc.). [Channels and tracks are kept separate to allow the

ability to mix and match channels totracks]. RESTRICTION: At this

time, a Track‟s configuration contains only 1 <SourceDescriptor> which

is intended to describe the source for the recorded media-stream. This

media-stream will be construed as the equivalent of the input “channel”

for the track, which means that each Track can only record one input

stream. The media-stream however can be Multi-Media, if the source

delivers such a stream (to be found at the <SrcUrl>), as is the case with

IPMD. Even with legacy 3rd party Cameras (e.g. Axis cameras that

support audio), a single RTSP URL can deliver a Multi-Media streaming

session (via 2 RTP streams for the single RTSP Session).

• Source = Any input media device is a „source‟, whether the input is a

hardware oriented „port‟ (e.g. NTSC/PAL, audio input jack, etc.), or an

IP-based media device. All „sources‟ are identified by ISO/IEC

9834-8:2005 128-bit UUIDs/GUIDs to guarantee uniqueness within any

given system. Using the RaCM nomenclature specified herein, Sources

send their data to RaCM devices on via „streams‟ which are mapped to

„channels.‟ Channels are handles used to identify the specific input

streams for a RaCM device. Channels that are recorded are then mapped

onto „tracks‟ for recording. See the following diagram for more details.

Within the RaCM Device, such „sources‟ are not explicitly configured.

These logical „sources‟ are visible (Read-Only fashion) via the

“/PSIA/ContentMgmt/status/sources” Resource. It is also possible to

search based on these „sources‟ via “/PSIA/ContentMgmt/search”

Resource.

• Metadata = Content based on PSIA metadata/event specification. This

includes events, alarms, etc.

• Service = an intelligent REST resource.

• Resource = A directly addressable REST object.

• URI = a virtual path that specifically identifies a REST resource; this path

must follow the service/resource hierarchy (see PSIA Service Model

specification).

• Segment = A general term addressing a single, contiguous portion of a

media track, or (in some cases) a stream. Basically, a „media clip‟ that is

less than the whole of a respective media track or stream, yet is

individually accessible via one of the mechanisms specified in this

document.

3.2 Relationship of Entities and Terminology

Below are the basic relationships between the terms defined above.

• Source = the device that is the origin point for input to a RaCM device.

This is usually a camera, encoder (video and/or audio) or metadata

generator. All devices have their own ISO/IEC 9834-8/ITU X.667,

128-bit UUID/GUID as their base identity.

• Channel = incoming media stream (input identifier). This is a

handle/identifier for a specific input stream. If a device generated an audio

and a video stream, which a RaCM device is recording, a „channel‟ is used

to identify each specific stream type (see „Stream‟ below).

• Stream = in general, a network-based output media connection (output

identifier). Basically, any PSIA device that outputs a media data stream onto

a network is outputting a „stream‟ for each media type. For example, an IP

camera that supports two video resolutions, and audio, has the ability to

generate 3 „streams‟; one for each of the video resolutions/rates and one for

the audio. This corresponds to the RTSP/SDP model. One session managing

multiple streams. DVRs, which contain their own encoders, generate an

internal data stream that is mapped to a channel identifier.

• Track = a recorded channel. Since input characteristics may change over

time, „tracks‟ are the virtual containers for recorded content associated with a

„channel‟. Channels may be extant or extinct with respect to a track. That is

why tracks are separate from channels. Channels are mapped to tracks for

recording.

The following diagram depicts the relationships between streams, channels and

tracks.

IP Media Device advertises its Streams by channels. Based on configuration

the RaCM device selects the IPMD’s stream channel ID (i) which is indigenous

to the IP Media Device. This input stream becomes Channel ‘m’ on the RaCM

device (since it has multiple inputs) for this particular live stream. Via

configuration it is Mapped to track ‘n’ for recording. The track ID ‘n’ may, or

may not, be equal to ‘m ’. When a client requests a live stream from the RaCM

device, it uses the advertised Channel ID ‘m’. When it requests a stream from

the archived track, it uses the Advertised track ID ‘n’. Searches based on the

Source ID of ‘GUID:X’ will result in A list of all the tracks that match the IPMD’s

Source ID (GUID:X). In this case, it is Track ‘n’ whose track configuration

references the source channel ‘m’.

3.3 Arbitrary Stream and Track Associations

The RaCM specification does not currently support the maintenance of logical

collections of streams from different sources or even multiple streams from the same

source. Such abstractions are best performed by a higher- level, external entity (e.g.

VMS); though track “grouping” may be supported in future release of RaCM.

Bundling an Audio and Video stream together is already supported by

the basic definition of a stream from the same source; however associating a Video

stream from 1 camera to an Audio stream from another camera or to a POS (Point of

Sale) Metadata stream is not supported. In general, the burden such abstractions

should be avoided by RaCM, unless they fall out naturally from the existing data

definitions. The external VMS entity can easily create such associations within its

database.

3.4 XML Reserved Characters

Within an XML document, some characters are reserved for language use. If

these characters appear in data values, they should be replaced with their Entity

Reference equivalents (akin to ANSI Escapes) to avoid parsing errors.

Character Description Entity Reference Comments
< Less than < May never appear in data.
& Ampersand & May never appear in data.
> Greater than > Replace as best practice.
“ Double quote " Replace as best practice.
„ Single quote ' Replace as best practice.
% Percent % Replace as best practice.
Note that � (null) is not permitted.

For Example, the URL

“rtsp://144.70.13.92:554/PSIA/Streaming/tracks/27?offset=a07724&endtime=2009-05-18T10:31.25

” would appear as follows in XML:

<playbackURI>rtsp://144.70.13.92:554/PSIA/Streaming/tracks/27?offset=a07724&endt

ime=2009-05-18T10:31.25</playbackURI>

4 Resource Structure

本文档制定的相关接口均放在/PSIA/Custom/SelfExt/ContenMgmt分支下。

The above diagram depicts the basic REST resources supported by a spec-compliant

PSIA RaCM device as outlined in this document. The colored boxes in the diagram

indicate resources that are „Services‟. Services are resources that carry attributes

defined by “description” and “capabilities” schemas (see below and PSIA Service

Model specification). Additionally, the resource hierarchy determines the REST

URI structures used to interact with each resource.

Resource Name Description Mandatory/Optional

Description will respond to an HTTP GET with a
<ResourceDescription> datablock

Mandatory

Capabilities will respond to an HTTP GET with a

resource-specific datablock
Generally Optional;

Required for some

RaCM Services
Index will respond to an HTTP GET with a

<ResourceList> datablock
Mandatory

Indexr will respond to an HTTP GET with

<ResourceList> datablock
Optional

PSIA

System(Service Modle spec)

Security(IP Media spec)

Streaming(IP Media spec)

Custom/SelfExt/ContentMgmt(本文档)

5 General Rules, Guidelines

The following guidelines and requirements apply to those parties implementing this specification:

• All RaCM devices shall comply with the guidelines, formats, syntax, and base protocol

definitions contained in the PSIA Service Model specification.
• All RaCM devices shall implement the following PSIA REST Resource hierarchies, as

outlined on the PSIA IP Media Device (IPMD) Specification Version 1.0, Revision 0.7:

o For DVRs, the “/PSIA/System/Video/…” REST resources and services, as is

pertinent for the hardware capabilities for a given RaCM device.
o For DVRs that support PTZ commands, the “/PSIA/PTZ/…” REST resources and

services are to be implemented, as outlined in IPMD, where the PTZ capabilities
in the IPMD specification are functionally compatible for the DVR device.

o For DVRs and NVRs, the “/PSIA/System/…” REST resource hierarchies must be

implemented as defined in IPMD Sections, for the configurable system based
devices and I/O capabilities (network, serial, I/O, …) supported by a given RaCM

device.
o For DVRs, the “/PSIA/Streaming/Channels…” REST resource hierarchy for each

hardware channel it supports. The “picture”, and “requestKeyFrame” resources

are not required.
o For NVRs and hybrid DVRs, the “/PSIA/Streaming/Channels/status” REST resources

in IPMD.
o NVRs and hybrid DVRs must comply with the management guidelines outlined in the

following Section regarding the management of external IP media devices.

o For DVRs and NVRs, the “/PSIA/Security…” REST resources, in IPMD Sections, as
outlined by Section 13 of this document (“/PSIA/Security”) are to be implemented.

o All RaCM devices shall support the “/PSIA/System/time/…” REST resources for

setting/reporting local time on their devices unless they use a network domain
controller to access network time.

o All DVRs and NVRs must provide system level status for their devices via the
“/PSIA/System/status” REST resource defined in IPMD specification.

o DVRs and NVRs that support internal video motion detection (VMD) functionality,
must implement the “/PSIA/Custom/MotionDetection…” REST hierarchy described
in IPMD specification where the VMD function they provide is compatible with the

modes listed there.
Though the resource hierarchy described herein does cite specific resources in the IPMD

and Service Model specifications, it does not preclude RaCM device implementers from
incorporating other PSIA resources that are relevant. For example, in addition to the RaCM
required services, a DVR/NVR may choose to implement the IPMD “/PSIA/Diagnostics”

service resources. The objective of this specification is to provide the design details and intent
for the base protocol implementation.

(Updated v1.1) As a rule, handling REST/management commands should not affect the
streaming and recording behaviors. However, any REST/management command that modifies a
streaming, codec, or network parameter, may be disruptive/destructive to recording and/or

streaming. When a RaCM device performs a command that is disruptive, or destructive, to a
streaming and/or recording operation it MUST return the HTTP status code “206 Reset Content” in

the response message. This status code indicates a successful update, but indicates that there has
been some significant affect to the streaming/recording operations.

A number of clients should be able to send API commands to a Content Management device

concurrently. The maximum number of pending operations, and any associated timeouts, for each
API command are defined in later in this specification.

(New v1.1) DVR manufacturers should carefully read all of this section, Section 10.2 and
Section 13.3 to understand the configuration and correlation of „channels‟ to each other, and to
tracks, on a system that has local video codec hardware. Additionally, Section 13.3 describes how

all input channels are enumerated with respect to type and status.

5.1 DVR & NVR Design Considerations

Digital Video Recorder (DVR) devices have design issues unique to their product class. Unlike

NVRs, DVRs have onboard video and (in many cases) audio codec hardware as their input sources.
Since this hardware is intrinsic to the device, i.e. it is not dynamically assignable to the unit like NVR

input sources, DVRs must comply with the following design operational items, in addition to the
general requirements listed in the above section of this document:

• All video codec hardware must be listed as pre-configured (i.e. with default settings) input

„channels‟ in the following PSIA resource hierarchies:

o For DVR video input hardware that provides image setting parameters, such as

brightness, contrast, sharpness, etc., these settings must be accessible in the
“/PSIA/System/Video/inputs/channels…” resource hierarchy. This means that the

„VideoInputChannelList‟ XML schema document returned by a GET to the
“/PSIA/System/Video/inputs/channels” resource must list all of the existing input

channels as „VideoInputChannel‟ elements. The IDs for each element must be set
for each channel by the DVR and cannot be allowed to be changed by external
entities .

o DVR video codec hardware must be listed as pre-configured (i.e. using default
values) input „channels‟ in the “/PSIA/Streaming/channels…” resource. The

returned „StreamingChannelList” XML schema document must be pre-populated
with all of the codec channels that are available for configuration and use. The
channel IDs in the schema must be preset by the DVR.

• All audio codec hardware present on a DVR must be listed as existing, pre-configured
(i.e. using default values) hardware input „channels‟ in the
“/PSIA/System/Audio/channels…” resource hierarchy. The channel IDs must be pre-

populated in the „AudioChannelList‟ XML schema document returned by GETs to the
“/PSIA/System/Audio/channels…” resource. The channels IDs assigned by a DVR are
immutable by external entities.

• It is strongly recommended that all channel ID values be unary-based ASCII/XML
unsigned integer values to support consistency across vendors.

• 多个“/PSIA/Streaming/channels/<id>” 可能具有相同的 <videoInputChannelID>。

多个“/PSIA/Custom/SelfExt/ContentMgmt/DynStreaming/channels/<id>” 可能具有

相同的 <dynVideoInputChannelID>。考虑到stream与track的关系，强烈的建议

video input id, dynVideo input id, stream id, dynStream id采用如下编码方式：

(1) 为了不同设备之间的兼容性，/PSIA/System/Video/inputs/channels/<ID>与

/PSIA/Custom/SelfExt/ContentMgmt/DynVideo/inputs/channels/<ID>中的ID统一编号。例如：

如果Video/inputs/channels/<ID>为1到9，则DynVideo/inputs/channels/<ID>从1，10开始。ID

0给DVR或混合DVR零通道保留，通过获取/PSIA/System/Video/inputs/channels通道列表中

是否含有0，可知DVR或混合DVR是否支持0通道。

(2) 流或动态流<ID>的编码采用8位十进制整形编码，高六位表示视频输入或动态视频

输入通道号，低两位表示属于属于该通道的流编号，并且流通道号从1开始编。例
如对于混合DVR固有通道1的第9条流，则其编号为109；对于混合DVR的动态通

道100的第99条流，则其编号为10099

• Tracks will record from their respective <SourceDescriptor>‟s.

o Thus, each active Track implicitly creates an input „channel‟.

o The <id> for these „channels‟ are determined by the RaCM Device automatically.
o It is strongly recommended that these channel <id>‟s match the <Track> ID‟s and

are also propagated to the /PSIA/Streaming/channels/<id>‟s. This would facilitate
easy streaming of the “live” content that is feeding the Recorded <Track>, if exposing

this Stream to an external Client is desired by the RaCM implementor. For the NVR,
this “live” streaming feature is not critical, since the networked Camera‟s stream
should also be viewable by any Client on the network without aid from the RaCM

Device. For the DVR, this “live” stream serves a more critical function, since the
Camera is unlikely to also be network attached to allow for independent “live”

viewing.
• Redundant „channel‟ handling: The actual way of handling this problem is

implementation specific. When multiple tracks record from the same source (same
Device/GUID and same stream URL), they essentially create identical „channels‟. After
the first „channel‟ is created by the RaCM Device, the subsequent identical „channels‟

may simply refer to the first „channel‟ or new „channels‟ may be created which are
identical to the first (essentially cloning the first „channel‟). However, in the second
approach, the new „channels‟ would have their own <id>‟s, making the search interface

less effective (since channel-based searches would require a list of all identical „channel‟
<id>‟s to truly search all the desired „channels‟). In contrast, the first approach serves the
search and status interfaces better but is much more complex to implement, since the first

and original „channel‟ could not be removed based on any particular track being deleted
since multiple tracks may be referencing it.

The above design items are described here to aid in providing commonality in the
implementation of this specification, and provide clarity for those developing to the interfaces

defined herein. Hybrid DVR/NVR products must still follow the above guidelines for the onboard
codec hardware that is present on their respective devices. Please note that these design guidelines
pertain to the definition and configuration of the video/audio input hardware. The information related

to track configuration, status, etc., is addressed later in this document.

5.2 Input Source Management (Remote Camera Configuration)

NVRs, and hybrid DVRs, support external IP network devices as their input sources. These

devices, usually IP cameras, may, or may not, be PSIA protocol compliant. This specification does
not require the external input sources to be PSIA compliant in order to be supported by a RaCM

device. However, within the industry there are different methods for managing the support for,
configuration and status of, input IP media devices. PSIA RaCM devices must fall into one of two
possible categories regarding the management of external IP media sources. The management

categories are listed below:

Management M ode Mode Description

Simple This mode describes as RaCM device that manages track configuration,
but does not manage the settings related to video/audio codecs and
streaming at the external source camera/encoder. This means that
management entities such as VMS and PSIM applications are required to

manage the settings on the RaCM devices, and the external source
devices, separately. I.e. the RaCM device does not change the settings on

a source device when a codec or streaming related parameter is changed
on a track. A Simple RaCM device will attempt to open a new session to
the respective source with the new codec/streaming settings, but it will

NOT modify the codec/streaming configuration settings on an external
camera/encoder. In some cases, this is sufficient since codec settings on

some cameras can be modified on-the-fly via the session setup
parameters; in other cases the VMS/PSIM management application will
have to modify the codec/streaming settings at the source prior to making

track setting changes. In all cases in Simple management mode, the
management application (VMS, PSIM, etc.) is responsible for the

settings at all the devices and for the synchronization of those settings
between the sources and consumers. The recommendation in this mode is
that management applications SHOULD always change the settings at

the source device (camera, encoder) and then modify the appropriate
track settings on the dependent RaCM device(s). Please note that: A) this

can produce race conditions between the source the and recoding device
in some cases, and B) for some settings there will not be a disruption of
service but the RaCM device should always attempt (and log, if possible)

a reconnection of the streaming input when a track‟s codec setting is
modified.

Proxy RaCM devices that have the ability to remotely manage other source
device‟s codec/streaming parameters are called „proxy managers‟.
Modifications to codec/streaming settings on a proxy managing RaCM
device will also be performed at the external source device by the RaCM
device for those devices the RaCM unit knows how to configure.
Basically, in proxy management mode the RaCM device receives the
settings that affect streams and/or tracks, and performs, based on the
sources behavior, all of the necessary configuration adjustments on behalf

of the management application.RaCMv1.1不支持此种模式，我们通过引
入动态视频输入及动态流服务来支持Proxy模式。

Since the PSIA system Security model is not completed yet within the PSIA, all version 1.1
RaCM devices that support external IP media devices as input sources must comply with the

Simple management mode listed above. In order to aid interoperability, and to support the
future use of Proxy management mode, a new RaCM v1.1 REST resource
“/PSIA/ContentMgmt/sourceSupport” has been created. This resource identifies which mode of

management and level of interoperability a RaCM device provides for each advertised
camera/encode device it claims support for (see /PSIA/ContentMgmt/sourceSupport (new v1.1)).
Fundamentally, this RaCM resource provides a list of IP cameras and encoders, by manufacture

and model, that are supported (i.e. compatible) along with the management mode for each (for
v1.1 RaCM devices this is „Simple‟ mode). This resource also addresses an area of
compatibility and interoperability that the RaCM version 1.0 specification did not directly
define. These areas are covered in more detail in the following sections of this document.

6 ContentMgmt Base Service

The „ContentMgmt‟ base service is the „root‟ for all Recording and Content Management (RaCM)
device function related to the recording and management of multimedia data. This service is the base

node in the REST resource hierarchy for all active functions provided by a RaCM device.
As mentioned in the previous section, the RaCM device must also comply with the PSIA Service

Model specification and also implement the required IPMD Services.

6.1 /PSIA/ContentMgmt/profile

Due to the complexity of the functions entailed in a recording and content management
(RaCM) device, all RaCM devices MUST provide a „profile‟ resource (schema instance) such that

entities accessing them may determine their functional level and basic attributes. Details are outlined
below.

URI /PSIA/Custom/SelfExt/ContentMgmt/profile Type Resource

Requirement

Level
- All -

Function
RaCM Mandatory REST resource/object that publishes the functional profile/level of

a RaCM device and its operable service/resource structure.

Methods Query String(s) Inbound Data Return Result

GET None <CMProfile>

PUT N/A N/A <ResponseStatus w/error code>

POST N/A N/A <ResponseStatus w/error code>

DELETE N/A N/A <ResponseStatus w/error code>

Notes The „GET‟ request issued to retrieve an instance of the „CMCapabilities‟ XML schema.

Example(s) <?xml version="1.0" encoding="UTF-8"?>

<CMProfile version="1.0" xmlns="urn:psialliance-org">

<profileLevel>basic+</profileLevel>

<supportedResourceList>

<supportedResource>/PSIA/ContentMgmt/search</supportedResource>

<supportedResource>/PSIA/ContentMgmt/status</supportedResource>

<supportedResource>/PSIA/ContentMgmt/status/volumes</supportedResource>

<supportedResource>/PSIA/ContentMgmt/status/tracks</supportedResource>

<supportedResource>/PSIA/ContentMgmt/status/channels</supportedResource>

<supportedResource>/PSIA/ContentMgmt/status/sources</supportedResource>

<supportedResource>/PSIA/ContentMgmt/record</supportedResource>

<supportedResource>/PSIA/ContentMgmt/record/profile</supportedResource>

<supportedResource>/PSIA/ContentMgmt/record/tracks</supportedResource>

<supportedResource>/PSIA/ContentMgmt/record/control</supportedResource>

<supportedResource>/PSIA/ContentMgmt/schedules</supportedResource>

</supportedResourceList>

<mfgrInformation>WarpedAndJaded Inc., RecorderWare Version 2.01.4, Model

1600</mfgrInformation>

<CMProfile>

The above example represents the Content Management profile XML instance for a „Basic‟
profile/level device that supports some optional features (hence the “basic+” tag). The
advertised resource list outlines all the supported, non-overhead REST resources (such as
„index‟ and „description‟). Since this is a basic device only the minimum resources are listed.

6.1.1 /PSIA/ContentMgmt/profile Schema Definition

The profile schema for the Content Management base service describes 3 major areas:

• The functional profile/level of the RaCM device, which is either „Basic‟ or „Full‟; devices
that support optional functions must add a plus sign („+‟) suffix to the profile level tag (e.g.

“full+”).

• A list of all the supported resources. This enables service users to determine what functions

(i.e. REST resources) are active on a particular device instance.

• Optional, but recommended, Manufacturer information relevant to the make/model, type and

version of the device.

XSD: To get the latest version of all RaCM XSDs, including this one (cmProfile.xsd) please

download from the PSIA documents website: http://www.psialliance.org/documents_download.html

6.2 /PSIA/ContentMgmt/sourceSupport

For version 1.1-compliant RaCM devices that support external IP cameras and encoders as input

devices, the „sourceSupport‟ REST resource MUST be supported in order to advertise the types and
models of devices that a unit is compatible with. Section Input Source Management of this
specification describes the management modes a RaCM device may support for managing external

IP input sources. In version 1.1, RaCM devices are only required to support Simple management

mode.如果希望支持proxy模式，可以使用海康扩展接口来实现。 GETs from the

“/PSIA/ContentMgmt/sourceSupport” resource return a schema that describes the manufacturers,
makes and models of IP media devices that a RaCM device is compatible with. The following table

provides the base details for the „sessionSupport‟ resource. Please note that for version 1.1. RaCM
devices this is a read-only resource.

URI /PSIA/ContentMgmt/sourceSupport Type Resource

Requirement

Level
Basic (v1.1)

Function
Description of the IP media devices, in mfgr, make and model, that a RaCM devices

supports as input sources

Methods Query String(s) Inbound Data Return Result

GET

Optional:

“send=head”

“send=top”,
“send=middle”
“send=bottom” OR…

“mfgr=<mfgrName>”

None <CMSourceSupport>

PUT None None <ResponseStatus w/error code>

POST None None <ResponseStatus w/error code>

DELETE None None <ResponseStatus w/error code>

Notes The schema and element definitions for this resource follow.

http://www.psialliance.org/documents_download.html

Example XML

<?xml version="1.0" encoding="UTF-8"?>

<CMSourceSupport version=”1.0” xmlns=”urn:psialliance-org”>

< mediaDeviceListSize>17</ mediaDeviceListSize>

< supportedMediaDeviceSourceList>

<MediaDeviceSource>

<MediaDeviceMfgr>GoodVision</MediaDeviceMfgr>

<MediaDeviceMgmtMode>Simple</MediaDeviceMgmtMode>

<MediaDeviceModel>GVX-1000</MediaDeviceModel>

<MediaDeviceModel>GVX-1000PTZ</MediaDeviceModel>

<MediaDeviceModel>GVX-1070D</MediaDeviceModel>

<MediaDeviceModel>GVX-1150PTZ</MediaDeviceModel>

<MediaDeviceModel>GVX-1500D</MediaDeviceModel>

<MediaDeviceModel>GVX-2000D</MediaDeviceModel>

</MediaDeviceSource>

<MediaDeviceSource>

<MediaDeviceMfgr>ClearView</MediaDeviceMfgr>

<MediaDeviceMake>MaxView Series</MediaDeviceMake>

<MediaDeviceMgmtMode>Simple</MediaDeviceMgmtMode>

<MediaDeviceModel>MCV-100F</MediaDeviceModel>

<MediaDeviceModel>MCV-250PTZ</MediaDeviceModel>

<MediaDeviceModel>MCV-500</MediaDeviceModel>

<MediaDeviceModel>MCV-650PTZ</MediaDeviceModel>

</MediaDeviceSource>

<MediaDeviceSource>

<MediaDeviceMfgr>Gotcha</MediaDeviceMfgr>

<MediaDeviceMake>Professional Series</MediaDeviceMake>

<MediaDeviceMgmtMode>Simple</MediaDeviceMgmtMode>

<MediaDeviceModel>GP2100F</MediaDeviceModel>

<MediaDeviceModel>GP2500D</MediaDeviceModel>

<MediaDeviceModel>GP3000PTZ</MediaDeviceModel>

<MediaDeviceModel>GP3200FA</MediaDeviceModel>

<MediaDeviceModel>GP3500PTZA</MediaDeviceModel>

</MediaDeviceSource>

<MediaDeviceSource>

<MediaDeviceMfgr>PSIA</MediaDeviceMfgr>

<MediaDeviceMake>Any PSIA compliant IP Media device</MediaDeviceMake>

<MediaDeviceMgmtMode>Standard</MediaDeviceMgmtMode>

<MediaDeviceMgmtMode>PTZ</MediaDeviceMgmtMode>

</MediaDeviceSource>

</ supportedMediaDeviceSourceList>

</CMSourceSupport>

The above example represents a RaCM device that supports 17 different camera models from

4 different manufacturers. Please note that the „make‟ element is not used on every

manufacturer. Also, the „PSIA‟ IP Media Device support is listed as a generic manufacturer

with Standard (i.e. non-PTZ) and a PTZ generic model support. This example is only referential.

Accesses to the „sessionSupport‟ resource returns a „CMSourceSupport‟ schema document instance.

This schema document is primarily a list of the types and models of IP media devices that a RaCM
device supports as compatible input sources. Each element in a list element is comprised of the

following parameters:

Element name Requirement Description

“MediaDeviceMfgr” Mandatory XML string field that lists the manufacturer of the
supported IP Media Device. This field is treated as

case insensitive to aid in searching and matching (e.g.
Luminati = luminati, effectively).

“MediaDeviceMake” Optional Optional XML string field that lists the make of an IP
Media device. Some manufacturers come out with
„lines‟ (i.e. product lines) of cameras that share protocol
attributes. This field is to aid in identifying products
that belong to a certain product line (where/when that
information is pertinent and relevant).

“MediaDeviceModel” Mandatory XML string that identifies the model of a certain IP
Media device.

“MediaDeviceMgmtMode” Mandatory XML type restricted to “Simple” or “Proxy”. “Simple”

is the only valid value for version 1.1 RaCM devices.

Please note that all of the values contained in the above fields are treated in a case insensitive
manner to aid in better interoperability between management applications, clients and the RaCM

devices. The purpose of the “CMSourceSupport” schema is to provide consumers with a well
ordered list of the media devices that it can record and stream. It is also acceptable for „generic‟
media device support to be listed where the RaCM device has an industry (or mfgr) standards-based

driver that supports compliant cameras generically (i.e. the “MediaDeviceMfgr” does not have to
contain a literal manufacturer; it could contain a value like “PSIA” or “PSIA PTZ”, etc.). The full

schema definition follows.

6.2.1 Source Support XML Schema Definition

XSD: To get the latest version of all RaCM XSDs, including this one (cmSourceSupport.xsd) please
download from the PSIA documents website: http://www.psialliance.org/documents_download.html

This schema definition is basically a list of elements that define the types of IP media devices that are
supported, or are compatible with, a RaCM device. The first element is a count of the number of IP

media device models (i.e. “MediaDeviceModel” entries) that are listed in a “CMSourceSupport”
document instance. This is important since the size of the schema can be huge, in some cases, and

due to the fact that consumers can ask for only the „count‟ of the supported media devices (see
following section). Please note that each list element, which has one manufacturer value, can support
multiple model numbers/strings per that manufacturer value. The manufacturer name can also

identify standards organizations, not specific manufacturers.

6.2.2 Access and Operation of Source Support

The REST URI structure of the “/PSIA/ContentMgmt/sourceSupport” resource allows consumers to

http://www.psialliance.org/documents_download.html

ask for portions, or all, of the schema document information (see table in above Section 8.4). A

consumer accessing source support by a simple GET to the “/PSIA/ContentMgmt/sourceSupport”
resource will get the entire data list of all supported IP media devices in the “CMSourceSupport”

schema instance. However, due to the fact that the size of this XML list could be prohibitively large,
RaCM devices MUST support the following options for getting portions of the source support
information without requiring the entire data set. There are two query parameters that can be added

to the REST URI for getting portions of the overall information set. They are:

• “send=…”. The send designator identifies that the consumer only wants a portion of the

overall source support information. A value is supplied with the “send=” string as an NVP
that designates the portion of the information to be sent. This is discussed in more detail

below.

• “mfgr=…”. The data designator specifies a „filter‟ for the information to be returned.

Basically, a consumer specifies what type of information it is looking for. This is described
in detail below.

Please note that the „send‟ and „mfgr‟ query parameters are mutually exclusive; they cannot be used

in the same HTTP/REST GET message since they each counter-actively affect what, and how much,
of the source support information is returned by a RaCM device. Consumers of source information

are to use these query string parameters to govern the amount of source information that is
transferred since this information base can be very large. Each of the query string parameters is
described below, in detail

6.2.2.1 “Send=…” Query String Parameter

The “send=…” query string parameter (QSP) enables consumers to specify, or control, (in a coarse

manner) the amount of source support information that they desire to receive. If the “send=…” QSP
is not present when a GET to the “/PSIA/ContentMgmt/sourceSupport” resource is issued, ALL the
source support information will be returned in the CMSourceSupport schema instance. In order to

prevent data overrun, the “send=…” QSP is provided such that the consumer can ask for the source
support list information in „chunks‟. The amount, and type, of information is specified by the value

tag supplied with the “send=…” QSP. The value tags that can be supplied are listed below with
descriptions.

Tag
Value

URI Example Description

“head” GET
/PSIA/ContentMgmt/sourceSupport?send=head

This tag value indicates that the
consumer only wants the returned
schema instance to contain the

count of the number of source
support models in its list; No
element data should be returned.

This allows consumers to gauge the
approximate size of the source

support information base, in total.

“top” GET
/PSIA/ContentMgmt/sourceSupport?send=top

This tag value indicates that the

consumer wants the top 1/3rd

(roughly) of the source support list.
RaCM devices receiving this QSP
should provide, approximately, the
first one-third of the

“CMSourceSupport” list.

“middle” GET
/PSIA/ContentMgmt/sourceSupport?send=middle

This tag value indicates that the

consumer wants the middle 1/3rd
(roughly) of the source support list.
RaCM devices receiving this QSP
should provide, approximately, the
middle one-third of the
“CMSourceSupport” list data.

“bottom” GET

/PSIA/ContentMgmt/sourceSupport?send=middle

Similar to the two above tags, this

tag value indicates that the consumer
wants the last 1/3rd (roughly) of the
source support list. RaCM devices
receiving this QSP should provide,
approximately, the final one-third of
the “CMSourceSupport” list data.
Please note that it is up to the RaCM
device on how to apportion the

source support info into „chunks‟.

When a RaCM device receives a “send=head” request, the returned schema should only contain the

“MediaDeviceModelCount” element and its value. For all of the other QSP strings, the RaCM
device is to provide portions of the schema document that align on list element boundaries (i.e.
manufacturer/make boundaries). This apportioning scheme prohibits the use of the “mfgr=…” QSP,

which is described in the following section. The following examples are provided as additional
descriptive information. These examples are based on the example XML schema instance listed in

the table at the top of Section /PSIA/ContentMgmt/sourceSupport.

Send „head‟ Example:

(request)

GET /PSIA/ContentMgmt/sourceSupport?send=head HTTP/1.1

… (response)

HTTP/1.1 200 OK

Content-type:application/xml

Content-length :165

<?xml version="1.0" encoding="UTF-8"?>

<CMSourceSupport version=”1.0” xmlns=”urn:psialliance-org”>

<MediaDeviceModelCount>17</MediaDeviceModelCount>

</CMSourceSupport>

Send „top‟ Example :

(request)

GET /PSIA/ContentMgmt/sourceSupport?send=top HTTP/1.1

… (response)

HTTP/1.1 200 OK

Content-type:application/xml

Content-length :<nnn>

<?xml version="1.0" encoding="UTF-8"?>

<CMSourceSupport version=”1.0” xmlns=”urn:psialliance-org”>

<MediaDeviceModelCount>6</MediaDeviceModelCount>

<SupportedMediaDeviceSourceList>

<MediaDeviceSource>

<MediaDeviceMfgr>GoodVision</MediaDeviceMfgr>

<MediaDeviceMgmtMode>Simple</MediaDeviceMgmtMode>

<MediaDeviceModel>GVX-1000</MediaDeviceModel>

<MediaDeviceModel>GVX-1000PTZ</MediaDeviceModel>

<MediaDeviceModel>GVX-1070D</MediaDeviceModel>

<MediaDeviceModel>GVX-1150PTZ</MediaDeviceModel>

<MediaDeviceModel>GVX-1500D</MediaDeviceModel>

<MediaDeviceModel>GVX-2000D</MediaDeviceModel>

</MediaDeviceSource>

</SupportedMediaDeviceList>

</CMSourceSupport>

Send „middle‟ Example :

(request)

GET /PSIA/ContentMgmt/sourceSupport?send=middle HTTP/1.1

… (response)

HTTP/1.1 200 OK

Content-type:application/xml

Content-length :<nnn>

<?xml version="1.0" encoding="UTF-8"?>

<CMSourceSupport version=”1.0” xmlns=”urn:psialliance-org”>

<MediaDeviceModelCount>4</MediaDeviceModelCount>

<SupportedMediaDeviceSourceList>

<MediaDeviceSource>

<MediaDeviceMfgr>ClearView</MediaDeviceMfgr>

<MediaDeviceMake>MaxView Series</MediaDeviceMake>

<MediaDeviceMgmtMode>Simple</MediaDeviceMgmtMode>

<MediaDeviceModel>MCV-100F</MediaDeviceModel>

<MediaDeviceModel>MCV-250PTZ</MediaDeviceModel>

<MediaDeviceModel>MCV-500</MediaDeviceModel>

<MediaDeviceModel>MCV-650PTZ</MediaDeviceModel>

</MediaDeviceSource>

</SupportedMediaDeviceList>

</CMSourceSupport>

Send „bottom‟ Example :

(request)

GET /PSIA/ContentMgmt/sourceSupport?send=bottom HTTP/1.1

… (response)

HTTP/1.1 200 OK

Content-type:application/xml

Content-length :<nnn>

<?xml version="1.0" encoding="UTF-8"?>

<CMSourceSupport version=”1.0” xmlns=”urn:psialliance-org”>

<MediaDeviceModelCount>7</MediaDeviceModelCount>

<SupportedMediaDeviceSourceList>

<MediaDeviceSource>

<MediaDeviceMfgr>Gotcha</MediaDeviceMfgr>

<MediaDeviceMake>Professional Series</MediaDeviceMake>

<MediaDeviceMgmtMode>Simple</MediaDeviceMgmtMode>

<MediaDeviceModel>GP2100F</MediaDeviceModel>

<MediaDeviceModel>GP2500D</MediaDeviceModel>

<MediaDeviceModel>GP3000PTZ</MediaDeviceModel>

<MediaDeviceModel>GP3200FA</MediaDeviceModel>

<MediaDeviceModel>GP3500PTZA</MediaDeviceModel>

</MediaDeviceSource>

<MediaDeviceSource>

<MediaDeviceMfgr>PSIA</MediaDeviceMfgr>

<MediaDeviceMake>Any PSIA compliant IP Media device

</MediaDeviceMake>

<MediaDeviceMgmtMode>Standard</MediaDeviceMgmtMode>

<MediaDeviceMgmtMode>PTZ</MediaDeviceMgmtMode>

</MediaDeviceSource>

</SupportedMediaDeviceList>

</CMSourceSupport>

The above examples are for reference. The data set they contain is hypothetical and relatively small
for the sake of simplicity. Please note that in these examples the RaCM device made its own
arbitrary decision as to where to subdivide the CMSourceSupport information of „top‟ versus

„middle‟ versus „bottom‟. Also note that the “MediaDeviceModelCount” size varies since the
number of IP media device models varied per response. The next section describes the ability for

consumers to ask for specific forms of information.

6.2.2.2 “mfgr=” Query String Parameter

The “mfgr=…” QSP enables consumers to ask for supported IP media device information related to

a specific manufacturer or standards organization. Consumers using this capability can ask for
supported model information related to a specific manufacturer or standard. An example request

would look like:

GET /PSIA/ContentMgmt/souceSupport?mfgr=GoodVision

This type of request instructs the RaCM to only return a “CMSourceSupport” schema instance that
lists the supported models for the manufacturer “GoodVision”. The following is an example of what

is expected to be returned:
…
(request)

GET /PSIA/ContentMgmt/sourceSupport?mfgr=GoodVision HTTP/1.1

… (response)

HTTP/1.1 200 OK

Content-type:application/xml

Content-length :<nnn>

<?xml version="1.0" encoding="UTF-8"?>

<CMSourceSupport version=”1.0” xmlns=”urn:psialliance-org”>

<MediaDeviceListSize>6</MediaDeviceListSize>

<SupportedMediaDeviceSourceList>

<MediaDeviceSource>

<MediaDeviceMfgr>GoodVision</MediaDeviceMfgr>

<MediaDeviceMgmtMode>Simple</MediaDeviceMgmtMode>

<MediaDeviceModel>GVX-1000</MediaDeviceModel>

<MediaDeviceModel>GVX-1000PTZ</MediaDeviceModel>

<MediaDeviceModel>GVX-1070D</MediaDeviceModel>

<MediaDeviceModel>GVX-1150PTZ</MediaDeviceModel>

<MediaDeviceModel>GVX-1500D</MediaDeviceModel>

<MediaDeviceModel>GVX-2000D</MediaDeviceModel>

</MediaDeviceSource>

</SupportedMediaDeviceList>

</CMSourceSupport>

Please note that the manufacturer name string is treated in a case insensitive manner. Also,

manufacturer strings that contain spaces must use the W3C special character replacement scheme.
For example, a fictitious vendor named “Volcano Vision” would have a QSP that looks like

“...mfgr=Volcano%20Vision…”. RaCM devices must parse out, and convert, the special character
symbols just like the processing associated with a standard URI. Additionally, a consumer may place
multiple “mfgr=…” QSPs in a request. For example:

GET /PSIA/ContentMgmt/souceSupport?mfgr=GoodVision&mfgr=Gotcha&mfgr=AccuMax is a

valid REST URI for the sourceSupport resource. The recommendation is that a consumer should not

send more than 3 manufacturer IDs per request. If a RaCM device cannot process the number of
„mfgr‟ QSPs sent in a single request, it should return an HTTP status code of „503 Bad Request‟.

7 /PSIA/ContentMgmt/record

This section describes the REST Interfaces to configure the logical storage used for media archival, along
with the actual recording session configurations. A recording session is also known as a “track” in the

RaCM Device. A track archives media (Audio, Video, Metadata) from a Source. The Source can be
local (e.g. DVR recording from a local analog port) or remote (e.g. IP Network Media Device).

7.1 /PSIA/ContentMgmt/record/storageMounts

This REST Interface is used to configure the total storage available to the RaCM Device to be used to
archive media. This storage is described as a List of Mount points, along with root directories and sizes.

There is no affinity specified, at this time, with regards to assigning tracks or range of tracks to a
particular Disk or Mount.

URI /PSIA/ContentMgmt/record/storageMounts Type Resource

Requirement

Level
Basic

Function
Description of the REST method parameters and formats available to functionally

manipulate the „record/storage‟ resource.

Methods Query String(s) Inbound Data Return Result

GET None None <MountList>

PUT None <MountList> <ResponseStatus>

POST None <Mount> <ResponseStatus>

DELETE None None <ResponseStatus>

Notes

This resource is used to manage the total storage allocation and logical mounts of the

Recorder. It is allowable to DELETE the entire list, though any implementation is

free to return an error for that operation if that capability is undesirable.

Low level drive configuration should be done through “/PSIA/System/storage”.

Low level diagnostics, such as drive temperatures, should be available in future (TBD)
extensions to IPMD, under “/PSIA/System…” or “/PSIA/Diagnostics…”

This resource manages the <MountList> XML object and follows the same scheme used for <TrackList>

manipulation and other similar examples from IPMD that manage a list-based XML resource (see
“PSIA-REST List-Entry <id> Creation method”, below.). As such, GET and PUT methods are used to
access the entire <MountList>. POST is used (with a “dummy” <id> of 0) to create an individual entry

within the list; where the newly created <id> is returned in the <ResponseStatus> given for the POST
request.

Once an <Mount> entry is created, it can be accessed by its <id>, using this resource:

URI /PSIA/ContentMgmt/record/storageMounts/<id> Type Resource

Requirement

Level
Basic

Function
Description of the REST method parameters and formats available to access a single

<Mount> entry.

Methods Query String(s) Inbound Data Return Result

GET None None <Mount>

PUT None <Mount> <ResponseStatus>

POST N/A N/A <ResponseStatus w/ error code>

DELETE None None <ResponseStatus>

Notes
POST (i.e. Create) is not allowed for individual <Mount> entry, with given explicit

<id>.

Example XML <MountList>:

<?xml version="1.0" encoding="UTF-8"?>

<MountList version="1.0" xmlns="urn:psialliance-org">

<Mount>

<id>1</id>

<path>/dev/hda</path>

<dir>/racm1/record_tracks</dir>

<size>200000000000</size>

<descr>master ide</descr>

</Mount>

<Mount>

<id>2</id>

<path>/dev/sda</path>

<dir>/racm1/record_tracks</dir>

<size>500000000000</size>

<descr>first scsi</descr>

</Mount>

<Mount>

<id>3</id>

<path>d:</path>

<dir>/racm1/record_tracks</dir>

<size>100000000000</size>

<descr>win-dos drive</descr>

</Mount>

</MountList>

XSD: To get the latest version of all RaCM XSDs, including this one (cmRacmMount.xsd) please
download from the PSIA documents website: http://www.psialliance.org/documents_download.html

http://www.psialliance.org/documents_download.html

7.2 /PSIA/ContentMgmt/record/profile

Version 1.1 compatible RaCM devices have the ability to support more than one type of „track‟.

Since a track is nothing more than a named handle to a virtual content container, PSIA does not
specify how content is actually recorded, indexed, etc. However, the attributes and properties that

define how a track is configured, how a track‟s content is understood, and how its contents may
be played, are critical to interoperability. The definitions and descriptions of track attributes and
track types are defined in following Sections. The REST resource that advertises these recording

attributes (i.e. track types) is defined here.

URI /PSIA/ContentMgmt/record/profile Type Resource

Requirement

Level

-All-

Function
Description of the REST resource that advertises the track types supported by a RaCM

device.

Methods Query String(s) Inbound Data Return Result

GET None None <CMRecordProfile>

PUT None None <ResponseStatus w/Error Code>

POST None None <ResponseStatus w/Error Code>

DELETE None None <ResponseStatus w/Error Code>

Notes This resource is read-only.

Example <?xml version="1.0" encoding="UTF-8"?>

<CMRecordProfile version="1.0" xmlns="urn:psialliance-org">

<trackType>standard</trackType>

<trackType>polymorphic</trackType>

<trackType>polytemporal</trackType>

</CMRecordProfile>

The above example XML response instance indicates that the RaCM device supports all
of track types defined by the version 1.1 RaCM specification. See
“/PSIA/ContentMgmt/record (Recorder Configuration & Control)” for details about the

attributes and behaviors of track types.

The “/PSIA/ContentMgmt/record/profile” REST resource is a read-only advertisement to

management applications (VMSs, PSIMs, etc.) of the supported track types which, in turn,
governs their configuration options. All RaCM devices are required to support at least one
of the sanctioned track types described in this specification. The “CMRecordProfile”

schema definition also enables vendors to provide their own extensions to this information
using a structured extension mechanism. The schema is described below.

7.2.1 /PSIA/ContentMgmt/record/profile Schema Definition

XSD: To get the latest version of all RaCM XSDs, including this one (cmRecordProfile.xsd)
please download from the PSIA documents website:
http://www.psialliance.org/documents_download.html

RaCM devices list the track types they support which affects the configuration characteristics of

the tracks (i.e. polymorphic tracks can have video and audio sources mixed (for example)

http://www.psialliance.org/documents_download.html

whereas standard tracks contain only one form of media data). For vendors that desire to add

their own track type extensions, this is provided for in the schema with the following conditions:

• All RaCM devices MUST support at least one of the sanctioned version 1.1 track

types (standard, polymorphic, polytemporal). Any custom track type extensions
must be in addition to this requirement. This is to ensure that all RaCM have a base
level of interoperability.

• All custom extensions listed in a “CMRecordProfile” MUST have the following contents:

o The listed track type of “other” for the custom/extended track type.

o In the “profileExtension” element:
o A URI link to where the formal definition of the extension information can
be accessed.
o A brief description, embedded in the document instance, of what the

extension information means.
o The extension information itself.

The above requirements are levied to ensure that any vendor, or organization, specific
extensions are only embedded in the PSIA RaCM framework if there is proper definition for
interoperability amongst multiple parties.

Finally, the track type “group” is listed in the schema definition, but is not currently defined
for RaCM version 1.1. This track type is reserved for future use.

7.3 /PSIA/ContentMgmt/record/tracks

This REST interface is used to configure a recording session or “track”. A track is treated
virtually with regards to how the implementation may actually store the archived media on disk.

The track is generally accessed or referred to by its <id> or <TrackGUID>. The <Stream>
number is a logical (outbound streaming channel) number for the track and is not tightly

coupled to the <id>, which is treated as an index into the <TrackList>.

Note on GUIDs

All UUIDs/GUIDs MUST be universally unique. They can be assigned by a central VMS

Server or GUID broker or auto-generated locally. However, all UUIDs/GUIDs MUST be
compliant with the ISO/IEC 9834-8 / ITU X.667 formats and definitions.

Note on Recording Modes

Currently, only 2 recording modes are defined:

• CMR – “Continuous Mode Recording” which implies recording media as it is available.

• EDR – “Event-Driven Recording” which implies recording media when events/alarms are

detected.

• ALARM–报警录像，该模式记录报警录像.

• MOTION–移动侦测录像，该模式只记录移动侦测录像

• ALARMANDMOTION–报警与移动侦测录像，只有报警和移动侦测同时发生时才会

录像.

• COMMAND–报警与移动侦测录像，只有报警和移动侦测同时发生时才会录像.

In either mode, the <LoopEnable> Boolean MUST be respected.

Track Size

The Track‟s size is determined by the <Size> value. However, optionally, some flexibility

is allowed for best-effort by the implementation to honor the <Duration> value.

7.3.1 Custom Configuration Data (Extensions)

Custom configuration information can be added using <CustomExtensionList>, but for

interoperability, the name is assigned to each extension object which MUST be registered with
PSIA, and a schema (XSD) MUST be provided for the “xs:any” object(s).

7.3.2 PSIA-REST List-Entry <id> Creation method

Track <id>‟s, along with most other list-based <id>‟s, are managed (SET) by the target RaCM
Device. The method for track creation (and return of <id> value is in accordance with other
list- based XML object examples in IPMD). See the “/PSIA/ContentMgmt/record/tracks”

Resource Description, below.

7.3.3 Streaming URL implied in <Track> configuration

There is an implied relationship between the REST URL‟s and RTSP URL‟s.

Within the <Track> configuration, the <Channel> value is used for “live” viewing of the media
stream being recorded to that track, using the URL described in section Live Streams. The

Track‟s REST <id> value is used for recorded (i.e. “archive”) media streaming (see below).

7.3.4 Recording Source Description

The source for a recording track is logically described by the <SourceDescriptor>, which is part of

the track configuration. The <SourceDescriptor> contains two important tags which help uniquely
identify the media source: <SrcGUID> and <SrcUrl>. The <SrcGUID> is a GUID/UUID for a
stream source, which may also provide multiple channels of output. The <SrcChannel> value

allows for more specific description of the input media-stream at a logical level.

For a local DVR analog port, the <SrcUrl> should contain a symbolic reference to a local stream
(encoded from a local /System/Video/inputs/channels) as follows:

rtsp://localhost/PSIA/Streaming/channels/<id>

Also, for both local and remote sources, the <SrcDriver> provides an optional, vendor specific, hint

with regards to the name of an executable/driver to use for stream acquisition.

7.3.4.1 Source Description Correlation For Status Queries

The status of Tracks, Channels, and Sources can be queried from the Status resource under the

ContentMgmt service.

The status of a <SrcChannel> can be queried via:
GET /PSIA/ContentMgmt/status/channels/<SrcChannel>

The status of a <Track> can be queried via:

GET /PSIA/ContentMgmt/status/tracks/<id>

The status of the <SrcGUID> can be queried via:

GET /PSIA/ContentMgmt/status/sources/<SrcGUID>

7.3.5 Recording Schedule overview

The <TrackSchedule> defines the recording schedule for the Track. It generally contains either
external-references to schedules in the schedule database (/PSIA/ContentMgmt/schedules) or an

embedded sequence of <ScheduleBlock>‟s (typically just one). A <ScheduleBlock> is a single
logical schedule, identified by GUID. The default (embedded) <ScheduleBlock>, in the example,

contains the required identifiers <ScheduleBlockGUID> and <ScheduleBlockType>, along with a
sequence of <ScheduleAction>‟s, which are used to build a day-of-week schedule.

This default, day-of-week schedule contains <Actions> to perform during the defined period. A
period is defined by a start-time and end-time, with each time expressed as Day-of-Week and Time-

of-Day. The Day-of-Week value is identified by a restricted name string. The Time-of-Day is
expressed in local time, in order to allow for a more human-intuitive definition of time from the local
administrators perspective and also account for Day-Light-Savings Time. Thus, for a time period

expressed as “midnight to 8am” local time, the intended elapsed time is 8 hours normally.
However, if Day-Light-Savings Time is enabled, on the morning of transition (in the Spring and

assuming the switch occurs at 2:00 am), the actual elapsed time would represent just 7 hours of time,
during this morning of transition. In the Fall, the reverse would be true, and the actual elapsed time,
for just that morning, would be 9 hours.

Example XML fragment (“lunch-time” period):

<ScheduleActionStartTime>

<DayOfWeek>Monday</DayOfWeek>

<!-- inclusive -->

<TimeOfDay>12:00:00</TimeOfDay>

</ScheduleActionStartTime>

<ScheduleActionEndTime>

<DayOfWeek>Monday</DayOfWeek>

<!-- exclusive -->

<TimeOfDay>1:00:00</TimeOfDay>

</ScheduleActionEndTime>

<ScheduleDSTEnable>true</ScheduleDSTEnable>

The start-time is inclusive of the time specified. The end-time is exclusive to allow aggregation of

time period definitions to create a continuum without overlap/conflict.

<ExternalScheduleBlockReferences> allow for reduction in size and simplification of the <Track>
configuration object, by enabling references to shared schedules in a database, as opposed to
embedding them within each <Track> configuration.

7.3.6 Track Description NVP

One of the key elements in each track‟s parameter base is the “<Description>” element. This field is

a Comma Separated Variable (CSV) string which contains a list of Name-Value-Pairs (NVP of form
“Name=Value”. With this scheme, the comma („,‟) and equal („=‟) are treated as reserved
characters; however, if a Name or Value string must contain and these characters, the XML

encoding standard can be used to embed them if necessary (i.e. replace the „=‟ with &61, and replace

the „,‟ with &44).

Parameter

Name

Parameter Values Comments

trackType ¾ “standard” = normal, single content base track
¾ “polymorphic” = multi-content type track (v1.1)

¾ “polytemporal” = multi-time segmented track
(v1.1)
¾ “group”= reference to a group of tracks (v1.1)

Required Field

sourceTag Manufacturer specific device-type string (e.g.
make/model)

Optional

contentType ¾ “video”

¾ “audio”
¾ “metadata”
¾ “text

NOTE: For polymorphic tracks this indicates the
primary, or predominant, content type.

Required Field

codecType See Appendix A. Required Field
resolution Required for audio/video. Field indicating resolution of

the data elements in a datastream. For video, this is the

horizontal by vertical resolution in a „Horizontal x
Vertical‟ format where ASCII „x‟ separates the
horizontal and vertical integer numbers. The assumed

video format is progressive (i.e. frame based). For video
streams that are interlaced (i.e. field based) and ASCII

lower-case „i‟ needs to be For audio, it is the bit-width
of the samples.
If a text protocol is enabled for double-byte characters,

this field should be used to indicate “2B” character sets.

Required for
Audio/Video

framerate Frame rate of encoder output as a floating point number. Required for Video

bitrate Bit rate of datastream (bps or kbps integer). Optional

Examples

<Description>trackType=standard,sourceTag=AXIS210a,contentType=video,codecType=MPEG4-

SP,resolution=640x480,framerate=25.0,bitrate=3200 kbps</Description>

Polymorphic and poly-temporal tracks are not defined in Version 1.0 of the RaCM specification.

Additional definitions are committed for Version 1.1.

Copyright PSIA 2010

7.3.7 <MetadataEvtCfgList> (used in EDR Mode)

The Metadata Configuration is required to implement Event-Driven Recording. The
<MetadataEvtCfgList> contains a list of <MetadataEvtCfg> items which describe the

Domain/Class/Type of events/alarms that drive the Recording track. The fields here should
comply with the PSIA Common Event Model Specification. The <evSrcGUID> and <evSrcUrl>
identify the source entity from which the Metadata events/alarms are subscribed. The method

of subscription is TBD, but should comply with PSIA Common Event Model. For legacy
ip-cameras the <evSrcUrl> may specify a “hanging GET” url to retrieve a vendor-specific,

motion detection metadata stream.

7.3.8 /PSIA/ContentMgmt/record/tracks

URI /PSIA/ContentMgmt/record/tracks Type Resource

Requirement

Level

Basic

Function
Description of the REST method parameters and formats available to functionally

manipulate the „record/storage/tracks‟ resource.

Methods Query Strin (s) Inbound Data Return Result

GET None None <TrackList>

PUT N/A <TrackList> <ResponseStatus>

POST N/A <Track> <ResponseStatus>

DELETE N/A N/A <ResponseStatus w/error code>

Notes Track Creation: POST (Create) will expect, as HTTP Payload, an individual <Track>

object instead of the <TrackList>. For the Create operation, the <id> tag, within the
<Track> XML, must contain a “dummy” value of 0 (zero).

To lessen possibility for ambiguity, it is not permissible for the Client (xMS) to set the
<id> during track creation, though it is possible for the Client to update (PUT) the entire

<TrackList> (with each entry containing valid <id>‟s already set by the target). This
is in alignment with other such list-based REST Resources in IPMD.

Reference Example <ResponseStatus> from Service Model Specification:

<?xml version="1.0" encoding="UTF-8"?>

<ResponseStatus version="1.0" xmlns="urn:psialliance-org">

<requestURL>/Streaming/Channels</requestURL>

<statusCode>1</statusCode>

<!-- O=1-OK, 2-Device Busy, 3-Device Error, 4-Invalid Operation, 5-Invalid XML Format, 6-Invalid XML

Content; 7-Reboot Required -->

<statusString>OK</statusString>

<ID>1</ID>

</ResponseStatus>

Copyright PSIA 2010

7.3.9 /PSIA/ContentMgmt/record/tracks/<id>

Once created, individual Tracks are managed via:

URI /PSIA/ContentMgmt/record/tracks/<id> Type Resource

Requirement

Level

Basic

Function Resource to address (Read/Update) single <Track> by <id>.

Methods Query Strin (s) Inbound Data Return Result

GET None None <Track>

PUT None <Track> <ResponseStatus>

POST N/A N/A <ResponseStatus w/error code>

DELETE None None <ResponseStatus>

7.3.10 Example Track Creation Message Exchange

A. Client attempts track creation with “POST /PSIA/ContentMgmt/record/tracks” containing:

<?xml version="1.0" encoding="UTF-8"?>

<Track version="1.0" xmlns="urn:psialliance-org">

<!-- new dummy value: -->

<id>0</id>

<Channel>12345</Channel>

<Enable>true</Enable>

<Description>trackType=standard,sourceTag=AXIS210a,contentType=video,codecType=MPEG4-

SP,resolution=640x480,framerate=20.0,bitrate=6000 kbps</Description>

<TrackGUID>{A01AAAAA-BBBB-CCCC-DDDD-033595353625}</TrackGUID>

<Size>4000000000</Size>

<Duration>P10DT15H</Duration>

<DefaultRecordingMode>CMR</DefaultRecordingMode>

<LoopEnable>true</LoopEnable>

<!-- … REST OF OBJ NOT INCLUDED… -->

</Track>

B. If creation is successful, RaCM Device responds with:

<?xml version="1.0" encoding="UTF-8"?>

<ResponseStatus version="1.0" xmlns="urn:psialliance-org">

<requestURL>/PSIA/ContentMgmt/record/tracks</requestURL>

<statusCode>1</statusCode>

<statusString>OK</statusString>

<ID>777</ID>

</ResponseSta

tus>

Note that the <ID> tag is uppercase. This is to match the example in Service Model
Specification (Section 10.1.4). The returned Track <id> value is 777, which will be used in the
following Track Deletion example.

Example Track Deletion Message Exchange

Copyright PSIA 2010

A. Client attempts track deletion with “DELETE /PSIA/ContentMgmt/record/tracks/777”

(no payload), using <id> previously given by the creation example response, above.

B. If deletion is successful, RaCM Device responds with:

<?xml version="1.0" encoding="UTF-8"?>

<ResponseStatus version="1.0" xmlns="urn:psialliance-org">

<requestURL>/PSIA/ContentMgmt/record/tracks</requestURL>

<statusCode>1</statusCode>

<statusString>OK</statusString>

<ID>777</ID>

</ResponseStatus>

More detailed Single Track XML example (<Schedule> incomplete)

<?xml version="1.0" encoding="UTF-8"?>

<TrackList version="1.0" xmlns="urn:psialliance-org">

 <Track>

 <id>1</id>

 <Channel>12345</Channel>

 <Enable>true</Enable>

 <Description>trackType=standard,sourceTag=AXIS210a,contentType=video,codecType=MPEG4-SP,

resolution=640x480,frameRate=20 fps,bitrate=6000 kbps</Description>

 <TrackGUID>{A01AAAAA-BBBB-CCCC-DDDD-033595353625}</TrackGUID>

 <Size>4000000000</Size>

 <Duration>P10DT15H</Duration>

 <DefaultRecordingMode>CMR</DefaultRecordingMode>

 <LoopEnable>true</LoopEnable>

 <SourceDescriptor>

 <SrcGUID>{E800A543-9D53-4520-8BB8-9509062C692D}</SrcGUID>

 <SrcChannel>1</SrcChannel>

 <StreamHint>video, mp4, 640x480, 20 fps, 6000 kbps</StreamHint>

 <SrcDriver>RTP/RTSP</SrcDriver>

 <SrcType>mp4 video</SrcType>

 <SrcUrl>rtsp://10.3.2.26/mpeg4/media.amp</SrcUrl>

 <SrcUrlMethods>DESCRIBE, SETUP, PLAY, TEARDOWN</SrcUrlMethods>

 <SrcLogin>admin:admin</SrcLogin>

 </SourceDescriptor>

 <TrackSchedule>

 <ExternalScheduleBlockReferences>

 <ScheduleBlockReference>

 <ScheduleBlockGUID>{F018AD02-BC04-4520-8BB8-123409AC5678}</ScheduleBlockGUID>

 </ScheduleBlockReference>

 <ScheduleReference>

 <ScheduleBlockGUID>{C2F37123-DD19-4520-8BB8-444307DB5565}</ScheduleBlockGUID>

 </ScheduleReference>

 </ExternalScheduleBlockReferences>

 <ScheduleBlock>

 <ScheduleBlockGUID>{ABC12345-CDEF-4520-8BB8-7135789C8790}</ScheduleBlockGUID>

 <ScheduleBlockType>/psia/recording/schedule/default</ScheduleBlockType>

 <ScheduleAction>

 <id>1</id>

 <ScheduleActionStartTime>

 <DayOfWeek>Monday</DayOfWeek>

 <!-- inclusive -->

 <TimeOfDay>00:00:00</TimeOfDay>

 </ScheduleActionStartTime>

 <ScheduleActionEndTime>

 <DayOfWeek>Monday</DayOfWeek>

Copyright PSIA 2010

 <!-- exclusive -->

 <TimeOfDay>08:00:00</TimeOfDay>

 </ScheduleActionEndTime>

 <ScheduleDSTEnable>true</ScheduleDSTEnable>

 <Description>PreMorning (Midnight to 8am, local time)</Description>

 <Actions>

 <Record>true</Record>

 <Log>true</Log>

 <SaveImg>true</SaveImg>

 <ActionRecordingMode>EDR</ActionRecordingMode>

 <PreRecordTimeSeconds>30</PreRecordTimeSeconds>

 <PostRecordTimeSeconds>30</PostRecordTimeSeconds>

 <Fps>30.0</Fps>

 <RateKbps>3000</RateKbps>

 </Actions>

 </ScheduleAction>

 <ScheduleAction>

 <id>2</id>

 <ScheduleActionStartTime>

 <DayOfWeek>Monday</DayOfWeek>

 <!-- inclusive -->

 <TimeOfDay>08:00:00</TimeOfDay>

 </ScheduleActionStartTime>

 <ScheduleActionEndTime>

 <DayOfWeek>Monday</DayOfWeek>

 <!-- exclusive -->

 <TimeOfDay>12:00:00</TimeOfDay>

 </ScheduleActionEndTime>

 <ScheduleDSTEnable>true</ScheduleDSTEnable>

 <Description>Morning (8am to noon, local time) </Description>

 <Actions>

 <Record>true</Record>

 <Log>true</Log>

 <SaveImg>true</SaveImg>

 <ActionRecordingMode>CMR</ActionRecordingMode>

 <PreRecordTimeSeconds>30</PreRecordTimeSeconds>

 <PostRecordTimeSeconds>30</PostRecordTimeSeconds>

 <Fps>30.0</Fps>

 <RateKbps>3000</RateKbps>

 </Actions>

 </ScheduleAction>

 <ScheduleAction>

 <id>3</id>

 <ScheduleActionStartTime>

 <DayOfWeek>Monday</DayOfWeek>

 <!-- inclusive -->

 <TimeOfDay>12:00:00</TimeOfDay>

 </ScheduleActionStartTime>

 <ScheduleActionEndTime>

 <DayOfWeek>Monday</DayOfWeek>

 <!-- exclusive -->

 <TimeOfDay>1:00:00</TimeOfDay>

 </ScheduleActionEndTime>

 <ScheduleDSTEnable>true</ScheduleDSTEnable>

 <Description>Lunch (noon to 1pm, local time)</Description>

 <Actions>

 <Record>true</Record>

 <Log>true</Log>

 <SaveImg>true</SaveImg>

 <ActionRecordingMode>EDR</ActionRecordingMode>

Copyright PSIA 2010

 <PreRecordTimeSeconds>30</PreRecordTimeSeconds>

 <PostRecordTimeSeconds>30</PostRecordTimeSeconds>

 <Fps>30.0</Fps>

 <RateKbps>3000</RateKbps>

 </Actions>

 </ScheduleAction>

 <ScheduleAction>

 <id>4</id>

 <ScheduleActionStartTime>

 <DayOfWeek>Monday</DayOfWeek>

 <!-- inclusive -->

 <TimeOfDay>13:00:00</TimeOfDay>

 </ScheduleActionStartTime>

 <ScheduleActionEndTime>

 <DayOfWeek>Monday</DayOfWeek>

 <!-- exclusive -->

 <TimeOfDay>17:00:00</TimeOfDay>

 </ScheduleActionEndTime>

 <ScheduleDSTEnable>true</ScheduleDSTEnable>

 <Description>Afternoon (1pm to 5pm, local time)</Description>

 <Actions>

 <Record>true</Record>

 <Log>true</Log>

 <SaveImg>true</SaveImg>

 <ActionRecordingMode>CMR</ActionRecordingMode>

 <PreRecordTimeSeconds>30</PreRecordTimeSeconds>

 <PostRecordTimeSeconds>30</PostRecordTimeSeconds>

 <Fps>30.0</Fps>

 <RateKbps>3000</RateKbps>

 </Actions>

 </ScheduleAction>

 <ScheduleAction>

 <id>5</id>

 <ScheduleActionStartTime>

 <DayOfWeek>Monday</DayOfWeek>

 <!-- inclusive -->

 <TimeOfDay>17:00:00</TimeOfDay>

 </ScheduleActionStartTime>

 <ScheduleActionEndTime>

 <DayOfWeek>Tuesday</DayOfWeek>

 <!-- exclusive -->

 <TimeOfDay>00:00:00</TimeOfDay>

 </ScheduleActionEndTime>

 <ScheduleDSTEnable>true</ScheduleDSTEnable>

 <Description>Night (5pm to midnight, local time)</Description>

 <Actions>

 <Record>true</Record>

 <Log>true</Log>

 <SaveImg>true</SaveImg>

 <ActionRecordingMode>EDR</ActionRecordingMode>

 <PreRecordTimeSeconds>30</PreRecordTimeSeconds>

 <PostRecordTimeSeconds>30</PostRecordTimeSeconds>

 <Fps>30.0</Fps>

 <RateKbps>3000</RateKbps>

 </Actions>

 </ScheduleAction>

 <!-- …etc, rest of week, definined similar to Monday schedule items -->

 </ScheduleBlock>

 </TrackSchedule>

 <MetadataEvtCfgList>

Copyright PSIA 2010

 <MetadataEvtCfg>

 <id>1</id>

 <!-- Motion in Zone2 of src cam: Operate in (or switch to) Event-Driven Mode -->

 <evDomain>metadata.psia.org</evDomain>

 <evClass>vmd</evClass>

 <evType>motionAny</evType>

 <evAttribute>zone2</evAttribute>

 <evSrcGUID>{E800A543-9D53-4520-8BB8-9509062C692D}</evSrcGUID>

 <evSrcUrl>TBD-CEM XPORT</evSrcUrl>

 <evPriority>4</evPriority>

 <Actions>

 <Record>true</Record>

 <Log>true</Log>

 <SaveImg>false</SaveImg>

 <ActionRecordingMode>EDR</ActionRecordingMode>

 <PreRecordTimeSeconds>30</PreRecordTimeSeconds>

 <PostRecordTimeSeconds>30</PostRecordTimeSeconds>

 <Fps>30.0</Fps>

 <RateKbps>3000</RateKbps>

 </Actions>

 </MetadataEvtCfg>

 <MetadataEvtCfg>

 <id>2</id>

 <!-- Motion in OTHER cam: Switch to Continuous Recording Mode -->

 <evDomain>metadata.psia.org</evDomain>

 <evClass>vmd</evClass>

 <evType>motionAny</evType>

 <evAttribute>zone2</evAttribute>

 <evSrcGUID>{7611CAB6-16A9-441a-BC02-D5017F5F79EF</evSrcGUID>

 <evSrcUrl>TBD-CEM XPORT</evSrcUrl>

 <evPriority>4</evPriority>

 <Actions>

 <Record>true</Record>

 <Log>true</Log>

 <SaveImg>false</SaveImg>

 <ActionRecordingMode>CMR</ActionRecordingMode>

 <PreRecordTimeSeconds>30</PreRecordTimeSeconds>

 <PostRecordTimeSeconds>30</PostRecordTimeSeconds>

 <Fps>30.0</Fps>

 <RateKbps>3000</RateKbps>

 </Actions>

 </MetadataEvtCfg>

 <MetadataEvtCfg>

 <!-- Any Emergency: switch to Continuous Recording Mode -->

 <id>3</id>

 <evDomain/>

 <evClass/>

 <evType/>

 <evAttribute/>

 <evSrcGUID>{E800A543-9D53-4520-8BB8-9509062C692D}</evSrcGUID>

 <evSrcUrl>TBD-CEM XPORT</evSrcUrl>

 <evPriority>0</evPriority>

 <Actions>

 <Record>true</Record>

 <Log>true</Log>

 <SaveImg>false</SaveImg>

 <ActionRecordingMode>CMR</ActionRecordingMode>

 <PreRecordTimeSeconds>30</PreRecordTimeSeconds>

 <PostRecordTimeSeconds>30</PostRecordTimeSeconds>

 <Fps>30.0</Fps>

Copyright PSIA 2010

 <RateKbps>3000</RateKbps>

 </Actions>

 </MetadataEvtCfg>

 </MetadataEvtCfgList>

 </Track>

</TrackList>

7.3.11 Track List Schema

XSD: To get the latest version of all RaCM XSDs, including this one (cmTrackList.xsd) please

download from the PSIA documents website: http://www.psialliance.org/documents_download.html

7.4 /PSIA/ContentMgmt/record/control

This resource is used to send explicit control stimuli to the “record” service.

7.4.1 /PSIA/ContentMgmt/record/control/manual/start

URI /PSIA/ContentMgmt/record/control/manual/start/tracks/<id> Type Resource

Requirement

Level

Basic

Function
Description of the REST method parameters and formats available to

functionally manipulate the „record/control/manual/start‟ resource.

Methods Query String(s) Inbound Data Return Result

GET N/A N/A <ResourceDescription>

PUT N/A None <ResponseStatus>

POST

N/A

N/A
<ResponseStatus w/error

code>

DELETE

N/A

N/A
<ResponseStatus w/error

code>

Notes This resource is used to manually Start the recording track, regardless of

recording mode. TBD: optional Metadata (Manual-Event xml) can be sent

with the PUT Inbound Data for the Recorder to save.

To Enable or Disable (i.e. permanent Stop) the track, the configuration

interface should be used to update the track configuration object to set the
enable/disable value accordingly.

http://www.psialliance.org/documents_download.html

Copyright PSIA 2010

7.4.2 /PSIA/ContentMgmt/record/control/manual/stop

URI /PSIA/ContentMgmt/record/control/manual/stop/tracks/<id> Type Resource

Requirement

Level

Basic

Function
Description of the REST method parameters and formats available to

functionally manipulate the „record/control/manual/stop‟ resource.

Methods Query String(s) Inbound Data Return Result

GET N/A N/A <ResourceDescription>

PUT N/A None <ResponseStatus>

POST

N/A

N/A
<ResponseStatus w/error

code>

DELETE

N/A

N/A
<ResponseStatus w/error

code>

Notes This resource is used to manually Stop the recording track, regardless of

recording mode.

To Enable or Disable (i.e. permanent Stop) the track, the configuration
interface should be used to update the track configuration object to set the

enable/disable value accordingly.

7.4.3 /PSIA/ContentMgmt/record/control/lock

URI /PSIA/ContentMgmt/record/control/locks Type Resource

Requirement

Level

Basic

Function

Description of the REST method parameters and formats available to

functionally manipulate the „/PSIA/ContentMgmt/record/control/locks‟
resource.

Methods Query String(s) Inbound Data Return Result

GET None None <RecordingLockList>

PUT None <RecordingLockList> <ResponseStatus>

POST None <RecordingLock> <ResponseStatus>

DELETE N/A N/A <ResponseStatus>

Notes Used to manage the list of recording locks.

(see “PSIA-REST List-Entry <id> Creation method”,above.)

Copyright PSIA 2010

URI /PSIA/ContentMgmt/record/control/locks/<id> Type Resource

Requirement

Level
Basic

Function Resource used to manage a single <RecordingLock> entry.

Methods Query String(s) Inbound Data Return Result

GET None None <RecordingLock>

PUT None <RecordingLock> <ResponseStatus>

POST

N/A

N/A
<ResponseStatus w/error

code>

DELETE None None <ResponseStatus>

Notes

Example XML:

<?xml version="1.0" encoding="UTF-8"?>

<RecordingLockList version="1.0" xmlns="urn:psialliance-org">

 <RecordingLock>

 <!-- lock time range on particular Channel -->

 <id>1</id>

 <TrackId>12345</TrackId>

 <StartDateTime>2009-01-1T09:00:00-06:00</StartDateTime>

 <EndDateTime>2009-01-7T17:00:00-06:00</EndDateTime>

 <SrcGUID/>

 </RecordingLock>

 <RecordingLock>

 <!-- lock time range for all recorded channels -->

 <id>2</id>

 <TrackId>all</TrackId>

 <StartDateTime>2009-07-4T09:00:00-06:00</StartDateTime>

 <EndDateTime>2009-07-4T17:00:00-06:00</EndDateTime>

 <SrcGUID/>

 </RecordingLock>

 <RecordingLock>

 <!-- lock time range for particular source (GUID) -->

 <id>3</id>

 <TrackId>any</TrackId>

 <StartDateTime>2009-07-7T09:00:00-06:00</StartDateTime>

 <EndDateTime>2009-07-7T17:00:00-06:00</EndDateTime>

 <SrcGUID>{E800A543-9D53-4520-8BB8-9509062C692D}</SrcGUID>

 </RecordingLock>

</RecordingLockList>

XSD: To get the latest version of all RaCM XSDs, including this one (cmTrackLockList.xsd) please
download from the PSIA documents website: http://www.psialliance.org/documents_download.html

http://www.psialliance.org/documents_download.html

Copyright PSIA 2010

7.5 /PSIA/ContentMgmt/record/metadata

This is a PLACEHOLDER for future development. Implementers can choose to implement
this resourse as an experimental/custom feature, but no compliance testing will be done against

this resource as of the v1.0-v1.1 timeframe.

This REST Interface is used push metadata into the Recorder‟s archive. Normally a track can be

configured to record media (A/V) or metadata by having the recorder “subscribe” to a metadata
source (i.e. PULL model). This interface allows for an alternate means of getting metadata saved

to the archive. An example use of this function is the media tagging (annotation) scenario.

The saved metadata is retrieved using PSIA metadata transports, or, if recorded within a track, may

simply be streamed using the normal streaming transports (RSTP/RTP), though the data
encapsulation will comply with the forthcoming PSIA “Common Metadata/Event Management”

specification.

URI /PSIA/ContentMgmt/record/metadata Type Resource

Requirement

Level
Full

Function
Description of the REST method parameters and formats available to functionally

manipulate the „/PSIA/ContentMgmt/record/metadata‟ resource.

Methods Query String(s) Inbound Data Return Result

GET N/A N/A <ResponseStatus w/error code>

PUT N/A N/A <ResponseStatus w/error code>

POST N/A Metadata(*) <ResponseStatus>

DELETE N/A N/A <ResponseStatus w/error code>

Notes
This resource is used to push metadata into the Recorder for saving to the metadata

archive. The actual storage format and methodologies are implementation

specific.

Copyright PSIA 2010

8 /PSIA/ContentMgmt/schedules

This resource is used to manage the recording schedule database (i.e. schedules that are not

embedded with the <Track> configuration objects).

URI /PSIA/ContentMgmt/schedules Type Resource

Requirement
Level

Full

Function
Description of the REST method parameters and formats available to functionally

manipulate the schedules resource.

Methods Query Strin (s) Inbound Data Return Result

GET None None <ScheduleBlockList>

PUT N/A <ScheduleBlockList> <ResponseStatus>

POST N/A <ScheduleBlock> <ResponseStatus>

DELETE N/A N/A <ResponseStatus w/error code>

Notes ScheduleBlock Creation: Unlike Target assigned <id>‟s (e.g. <Track> id‟s), the

ScheduleBlockGUID‟s are assigned by the external Client. However, it is expected that,

for an individual <ScheduleBlock> POSTed during Creation, a successful operation will
cause the returned <ResponseStatus> to contain a matching copy of the POSTed
<ScheduleBlockGUID> value within the <ID> tag, for example:

<?xml version="1.0" encoding="UTF-8"?>

<ResponseStatus version="1.0" xmlns="urn:psialliance-org">

<requestURL>/PSIA/ContentMgmt/schedules</requestURL>

<statusCode>1</statusCode>

<statusString>OK</statusString>

<ID>{F018AD02-BC04-4520-8BB8-123409AC5678}</ID>

</ResponseStatus>

XSD: To get the latest version of all RaCM XSDs, including this one (ScheduleBlockList is defined
in cmTrackList.xsd) please download from the PSIA documents website:

http://www.psialliance.org/documents_download.html

8.1 /PSIA/ContentMgmt/schedules/<ScheduleBlockGUID>

Once created, individual <ScheduleBlock>‟s are managed via:

URI /PSIA/ContentMgmt/schedules/<ScheduleBlockGUID> Type Resource

Requirement

Level
Basic

http://www.psialliance.org/documents_download.html

Copyright PSIA 2010

Function Resource to address (Read/Update) single <ScheduleBlock> by <ScheduleBlockGUID>.

Methods Query Strin (s) Inbound Data Return Result

GET None None <ScheduleBlock>

PUT None <ScheduleBlock> <ResponseStatus>

POST N/A N/A <ResponseStatus w/error code>

DELETE None None <ResponseStatus>

Copyright PSIA 2010

9 /PSIA/ContentMgmt/search

This section of the specification defines the operation and parameters associated with the
„search‟ service within the PSIA Content Management hierarchy. Tables, examples and schemas are

provided for defining and explaining the search functions.

9.1 /PSIA/ContentMgmt/search/profile

Due to the complexity of the functions entailed in a recording and content management (RaCM)

device, all RaCM devices MUST provide a „profile‟ resource (schema instance) such that entities
accessing them may determine their functional level and basic attributes. Details are outlined below.

URI /PSIA/ContentMgmt/search/profile Type Resource

Requirement

Level

- All Profiles -

Function
RaCM Mandatory REST resource/object that publishes the functional

profile/level of a RaCM device and its operable service/resource structure.

Methods Query String(s) Inbound Data Return Result

GET None <CMSearchProfile>

PUT

N/A

N/A
<ResponseStatus w/error

code>

POST

N/A

N/A
<ResponseStatus w/error

code>

DELETE

N/A

N/A
<ResponseStatus w/error

code>

Notes
The „GET‟ request issued to retrieve an instance of the „CMCapabilities‟ XML

schema.

Copyright PSIA 2010

Example(s)

<?xml version="1.0" encoding="UTF-8"?>

<CMSearchProfile version="1.0" xmlns="psiallianxce.org:resourcedescription">

<searchProfile>full</searchProfile>

<textSearch>true</textSearch>

<maxSearchTimespans>2</maxSearchTimespans>

<maxSearchTracks>40</maxSearchtracks>

<maxSearchSources>40</maxSearchSources>

<maxSearchMetadatas>16</maxSearchMetadatas>

<maxSearchMatchResults>100</maxSearchMatchResults>

<maxSearchTimeout>120</maxSearchTimeout>

<maxConcurrentSearches>8</maxConcurrentSearches>

</CMSearchProfile>

The above example represents a hypothetical RaCM device that supports a „Full‟ profile
for search its functionality (see below for more details). The succeeding “textSearch”
parameter indicates that this device performs raw text string searches on recorded text,

and text-based metadata such as Point-of-Sale, or Automated Teller Machine output. The
next set of optional parameters (though recommended for Full devices) indicates the
maximum number of specific search parameters that can be part of a single instance of a

Search criteria. The following parameter, “maxSearchResults” indicates the maximum
number of results the RaCM will pass back per search instance. The optional
“maxSearchTimeout” parameter indicates that the RaCM device will timeout searches

that exceed two minutes (120 seconds) to execute. The final parameter, which is optional,
indicates the maximum number of concurrent search operations the RaCM device can
support.

9.1.1 PSIA/ContentMgmt/search/profile Schema Definition

The ContentMgmt/search/profile schema is used to define the types of searches a RaCM

device supports. A device with a search profile of „Basic‟ only performs searches with one
timespan per search request (see “/PSIA/ContentMgmt/search”). Devices that support the „Full‟

search profile must outline their parameter limits, as described in the following schema.

XSD: To get the latest version of all RaCM XSDs, including this one (cmSearchProfile.xsd) please

download from the PSIA documents website:
http://www.psialliance.org/documents_download.html

9.2 /PSIA/ContentMgmt/search

The Content Management „Search‟ service is the primary component for conducting searches
of content bases managed by a PSIA recording device. Fundamentally, searches are initiated using a
parameter-based criteria set which is conveyed by the initiator to the device via the

„CMSearchDescription‟ XML schema. Since not all programming languages allow content bodies
with HTTP GET methods, both „GET‟ and „POST‟ are supported as message types for initiating

searches. The responding device passes back the results in a „CMSearchResult‟ XML schema
instance for search requests that had valid syntax. If a search request is syntactically invalid (i.e. no
payload, malformed schema instance, etc.), an HTTP response with status code 400 (Bad Request)

and a corresponding „Response Status‟ are returned to the requester. Please note that a syntactically
correct search, that has no matching criteria, returns a „CMSearchResult‟ schema instance with a

„NO MATCHES‟ status string.
Essentially, most searches are conducted based on time and/or track and/or source related

http://www.psialliance.org/documents_download.html

Copyright PSIA 2010

search parameters. Full profile Content Management devices also support the potential for

metadata search related parameters. More details, and examples, follow.

URI /PSIA/ContentMgmt/search/ Type Service

Requirement

Level
- All Profiles -

Function
Mandatory description of the REST method parameters and formats available

to functionally manipulate the „search‟ resource/object.

Methods
Query

String(s)
Inbound Data Return Result

GET None <CMSearchDescription> <CMSearchResult or…>

PUT N/A N/A
<ResponseStatus w/error

code>

POST

None

<CMSearchDescription>

<CMSearchResult

or…ResponseStatus w/error

code>

DELETE N/A N/A
<ResponseStatus w/error

code>

Notes
The „GET‟ or „POST‟ messages require a “CMSearchDescription” XML document to
engage a search. The schema definition is described in Section 10.4.1. An example

XML document instance follows.

Example(s)

<?xml version="1.0" encoding="UTF-8"?>

<CMSearchDescription version="1.0" xmlns="urn:psialliance-org">

<searchID>{812F04E0-4089-11A3-9A0C-0305E82C2906}</searchID>

<trackIDList>

<trackID>9</trackID>

<trackID>22</trackID>

<trackID>43</trackID>

</trackIDList>

<timeSpanList>

<timeSpan>

<startTime>2009-06-10T12:00:00Z</startTime>

<endTIme>2009-06-10T13:30:00Z</endTime>

<timeSpan>

</timeSpanList>

<contentTypeList>

<contentType>video</contentType>

</contentTypeList>

<maxResults>40</maxResults>

<metadataList>

<metadataDescriptor>//metadata.psia.org/VideoMotion</metadataDescriptor>

<metadataList>

</CMSearchDescription>

The above example is for a search of tracks 9, 22, and 43, betw een twelve noon and 1:30PM on June 10th,

2009 for Video Motion events. The requester does not want more than 40 results passed back in the search
response, and, that matching results should only be video segments (based on the above “contentTy peList ”).

Copyright PSIA 2010

<?xml version="1.0" encoding="UTF-8"?>

<CMSearchDescription version="1.0" xmlns="urn:psialliance-org">

<searchID>{77E105E8-4C21-AA05-37B4-189A070A5B22}</searchID>

<sourceID> {3F2504E0-4F89-11D3-9A0C-0305E82C3301} </sourceID>

<timeSpanList>

<timeSpan>

<startTime>2009-07-12T09:00:00Z</startTime>

<endTIme>2009-07-12T17:30:00Z</endTime>

<timeSpan>

</timeSpanList>

<contentTypeList>

<contentType>video</contentType>

<contentType>audio</contentType>

</contentTypeList>

<maxResults>40</maxResults>

<metadataList>

<metadataDescriptor>/metadata.psia.org/VideoMotion</metadataDescriptor>

<metadataList>

</CMSearchDescription>

The above example is a search for Video Motion, betw een the hours of 9AM and 5:30PM, on July the 12th,

w ith respect to a specif ic source whose ID (GUID) is: 3F2504E0-4F89-11D 3-9A0C -0305E82C33 01. This
example GUID corresponds to an input source which can be resolved to an IP address. Please note that in
this example, the search requester only wants video and audio segments returned for matches

(contenTypeList).

<?xml version="1.0" encoding="UTF-8"?>

<CMSearchDescription version="1.0" xmlns="urn:psialliance-org">

<searchID>{F44EC031-4F89-3D90-9A14-0305E828D902}</searchID>

<timeStateList>

<trackState>inactive</trackState>

<trackState>locked</trackState>

<trackState>errored</trackState>

</timeStateList>

<searchTimeout>150</searchTimeout>

</CMSearchDescription>

The above example is a simple search for all tracks that are in an inactive, or locked, or errored state. These
states are described in detail in Section 11.4 of this document. Using track status as a search parameter only
makes sense w ith track-related parameters, or as a f ilter to remove unw anted tracks from a search. Also

noted in this example is the inclusion of the optional „timeout‟ parameter (“searchTimeout”). This parameter is
only valid if the RaCM device indicates in its search “capabilities” that is supports timeouts. In this example,
the requester is indicating that is desires the search to take no longer than 2.5 minutes (150 seconds) to
complete.

<?xml version="1.0" encoding="UTF-8"?>

<CMSearchDescription version="1.0" xmlns="urn:psialliance-org"

<searchID>{812F04E0-4089-11A3-9A0C-0305E82C2906}</searchID>

<timeSpanList>

<timeSpan>

<startTime>2009-06-10T12:00:00Z</startTime>

<endTIme>2009-06-10T13:30:00Z</endTime>

<timeSpan>

</timeSpanList>

<contentTypeList>

<contentType>text</contentType>

<contentType>metadata</contentType>

</contentTypeList>

<metadataList>

<metadataDescriptor>//metadata.psia.org/PointOfSale</metadataDescriptor>

<metadataDescriptor>//metadata.psia.org/User</metadataDescriptor>

<metadataList>

<searchText>”VOID”</searchText>

</CMSearchDescription>

The above example is for a search of all text and metadata associated with the Source 812F04E0-4089-

11A3-9A0C-0305E82C 2906 betw een twelve noon and 1:30PM on June 10th, 2009. The requester wants

recorded text and metadata (based on the “contentTypeList”) searched for the w ord “VOID”. The metadata
categories that the requester wants searched are restricted to Point-Of-Sale and User based metadata.

Please note that ALL text searches require a “contentTypeList” to specify the content types to be searhed;

valid types are “text” and/or “metadata”.

Copyright PSIA 2010

9.2.1 Search Query Parameter Schema Definition

The following XML schema definition defines the search parameters that are provided to
the ContentMgmt/search service. Basically, an entity can search based on time and/or source

and/or tracks and/or metadata. Basic profile devices are not required to support metadata in their
search criteria. Each search must be given a unique ID (“searchID”) by the initiator. This ID is
an ISO/IEC 9834-8/ITU X.667 compliant UUID/GUID. The responder echoes this value back in

the search response (see next section) to correlate the results to the corresponding query. Basic
profile devices are only required to support one query at-a-time. Full profile devices MUST

advertise the number of concurrent search queries they can support (via the
“/PSIA/ContentMgmt/search/profile” Resource).

The „cmSearchDescription‟ schema allows searches based on: track lists, track state lists,

source ID lists, channel ID lists, timespan lists, and metadata lists. Only one of these criteria is
required for a valid search.

Optional information includes the ability for an initiator to specify that it only wants to receive a
maximum number of responses to a search criteria (i.e. limit the potential number of responses). This
is specified by the “maxResults” element. When this limit is specified in a search request, the

responding device must not send more than the requested number of responses (matches). If the
querying entity specifies a “maxResult” limit that is less than the number of total results that matched

the original search criteria, it must re-issue the search query with the “search ResultsPosition”
parameter indicating the number of prior results the inquirer has already received. For example, a
client application searches for Video Motion events from the prior night and indicates it only wants a

maximum of ten results passed back. The ContentMgmt device, while performing the search,
discovers 23 matches. However, the device is only allowed to pass back the first ten results based on

the inquirer‟s “maxResults” value. The device does so, but indicates in the search response schema
instance a status string of “MORE”. After this, if the inquirer desires to retrieve the next set of
matching results, it must do so with the same search criteria and a “searchResultsPosition” value that

indicates the cumulative number of results received by the inquirer. In other words, the
“searchResultsPosition” is a walking index used to indicate where an inquirer desires the searching

entity to resume the search.
Another optional search parameter that governs, or conditions, the search result contents is the

“contentTypeList”. This element allows one or more “contentType” designators. These designators

instruct the searching Content Manager to only provide matching result segments that correspond to
the designated content types. The supported content types are: “video”, “audio”, “metadata”, “text”,
“mixed” (polymorphic – v1.1) and “other”. If a search specifies one, or more content types, the

searching Content Manager will ignore matches to the search criteria if the content segment/track
does not match the specified content type(s).

If a RaCM device supports raw text searches, searches are allowed to pass in “searchText” as a

search criteria, but only for “text” and/or “metadata” content types. The following conditions and
restrictions apply regarding text searching:

• The „content type‟ MUST be specified when conducting searches that involve text. The

applicable content types are “text” and “metadata”.

• There is an inherent limitation of one text string per search instance.

• The search string may not exceed 128 characters.

• ALL text searches are performed in a case insensitive manner such that any combination
of upper and lower casing can be matched („open matching‟).

• Any search string that contains whitespace, or special characters, MUST be started and
ended with double-quotes (“).

Copyright PSIA 2010

Since raw text searches are compute intensive, requesters, and RaCM devices, that honor

search timeouts should either: A) ignore timeouts for text searches, or B) timeouts should be
lengthened significantly for text searches.

Finally, RaCM devices that support search timeout limits must allow requesters to
dynamically/optionally specify „desired‟ timeout limits on a per-search basis. Please note that this is
a hint to the RaCM device to restrict, in a best effort manner, the search operation duration to the

time limit specified in the XML parameter set. If a RaCM device cannot honor the timeout it will
process the search as best it can. Additionally, a RaCM device that does not support search
timeouts should ignore a timeout if it errantly receives one on search request instance.

XSD: To get the latest version of all RaCM XSDs, including this one (cmSearchDescription.xsd)

please download from the PSIA documents website:
http://www.psialliance.org/documents_download.html

http://www.psialliance.org/documents_download.html

Copyright PSIA 2010

9.2.2 Search Query Results Schema

The response to a ContentMgmt/search operation, using the “CMSearchDescription” schema, is

defined by the “CMSearchResult” schema definition below. Fundamentally, the response echoes the
initiator‟s search ID and an overall status value. The status consists of 2 parts: A) a boolean, called

“responseStatus”, indicates overall success or failure, which is followed by B) the
“responseStatusString” which indicates a readable status string that further qualifies the overall
status (e.g. TRUE + “OK”, or TRUE + “MORE” [indicating more matches were found than the

initiator desired to receive], or FALSE + “NO MATCHES [search failed to find matches to specified
criteria], or FALSE + “INVALID TRACK ID” [indicating an invalid track ID had been provided]).

The combination of an overall Boolean status indicator, plus a qualifying string, allows a requester
to quickly determine if a search was successful and then have information detailing the operation.

After the response status, the responder provides the number of matches found, and a list of

“matchElements” that correspond the each matching multimedia segment. Each “matchElement”
contains the following information:

• The source ID of the input source that corresponds to the matching segment;

• The track ID of the multimedia track that corresponds to the matching segment;

• The timespan of the matching segment (since it is probably a subset of the overall search‟s

timespan);

• A media segment descriptor that the search initiator can directly use to playback the
corresponding match segment. It contains the following:

o The content type of the segment (video, audio, metadata, text, other);
o The codecType of the content in the segment (e.g. “MPEG4-SP” or G.726);
o The rate attribute of the segment, if applicable;
o The playback URI for the match segment (i.e. a URI of the responder‟s definition that

contains all the information necessary to „play‟ the segment, via RTSP, without the
responder having to recommit another search).

Optionally, the responder can include the following information in a “matchElement”
where applicable and/or supported:

• The channel ID of the source corresponding the match segment, if the input channel is still
active (i.e. „live‟);

• For metadata searches, the fully qualified PSIA Domain/Class/Type REST URI(s) of the
corresponding events that correlate to the match segment.

9.2.2.1 Search Response Examples

The following example XML schema instances describe some of the potential responses to search
queries. Please note that these examples are provided for reference but there are still many potential

scenarios not directly addressed.
<?xml version="1.0" encoding="UTF-8"?>

<CMSearchResult version="1.0" xmlns="urn:psialliance-org">

 <searchID>{812F04E0-4089-11A3-9A0C-0305E82C2906}</searchID>

 <responseStatus>true</responseStatus>

 <responseStatusStrg>OK</responseStatusStrg>

 <numOfMatches>4</numOfMatches>

 <matchList>

 <matchElement>

 <sourceID>{b049902e72-0049-1158-c0d2-7e330680d93c}</sourceID>

 <trackID>27</trackID>

 <timeSpan>

 <startTime>2009-05-18T10:31.26</startTime>

 <endTime>2009-05-18T10:32:54</endTime>

 </timeSpan>

Copyright PSIA 2010

 <mediaSegmentDescriptor>

 <contenType>video</contenType>

 <codecType>MPEG4-SP</codecType>

 <rateType>”3 Mbps, 30 fps”</rateType>

<playbackURI>rtsp://144.70.13.92:554/PSIA/Streaming/tracks/27?offset=a07724&endtime=2009-05-18T1

0:31.25</playbackURI>

 </mediaSegmentDescriptor>

 <metadataList>

 <metadataDescriptor>//metadata.psia.org/VideoMotion/motion</metadataDescriptor>

 </metadataList>

 </matchElement>

 <matchElement>

 <sourceID>{b049902e72-0049-1158-c0d2-7e330680755e}</sourceID>

 <trackID>30</trackID>

 <timeSpan>

 <startTime>2009-05-18T10:40.03</startTime>

 <endTime>2009-05-18T10:41:04</endTime>

 </timeSpan>

 <mediaSegmentDescriptor>

 <contenType>video</contenType>

 <codecType>H.264-BP</codecType>

 <rateType>”1 Mbps, 15 fps”</rateType>

<playbackURI>rtsp://144.70.13.92:554/PSIA/Streaming/tracks/30?offset=a08c94&endtime=2009-05-18T1

0:41.04</playbackURI>

 </mediaSegmentDescriptor>

 <metadataList>

 <metadataDescriptor>//metadata.psia.org/VideoMotion/motionLeft</metadataDescriptor>

 </metadataList>

 </matchElement>

 <matchElement>

 <sourceID>{b049902e72-0049-1158-c0d2-7e330680755e}</sourceID>

 <trackID>31</trackID>

 <timeSpan>

 <startTime>2009-05-18T10:40.03</startTime>

 <endTime>2009-05-18T10:41:04</endTime>

 </timeSpan>

 <mediaSegmentDescriptor>

 <contenType>audio</contenType>

 <codecType>G.726</codecType>

 <rateType>”24 Kbps”</rateType>

<playbackURI>rtsp://144.70.13.92:554/PSIA/Streaming/tracks/31?offset=1446a90e&endtime=2009-05-18

T10:41.04</playbackURI>

 </mediaSegmentDescriptor>

 <metadataList>

 <metadataDescriptor>//metadata.psia.org/VideoMotion/motionLeft</metadataDescriptor>

 </metadataList>

 </matchElement>

 <matchElement>

 <sourceID>{b049902e72-0049-1158-c0d2-7e330680755e}</sourceID>

 <trackID>32</trackID>

 <timeSpan>

 <startTime>2009-05-18T10:40.03</startTime>

 <endTime>2009-05-18T10:41:04</endTime>

 </timeSpan>

 <mediaSegmentDescriptor>

 <contenType>metadata</contenType>

 <codecType>PSIA-GMCH</codecType>

 <rateType>none</rateType>

 <playbackURI>rtsp://144.70.13.92:554/PSIA/Streaming/tracks/32?offset=93e6a90e&endtime=200

9-05-18T10:41.04</playbackURI>

 </mediaSegmentDescriptor>

 <metadataList>

 <metadataDescriptor>//metadata.psia.org/VideoMotion/motionLeft</metadataDescriptor>

 </metadataList>

 </matchElement>

 </matchList>

</CMSearchResult>

The above example is in response to a search query for video motion events, with respect to a

Copyright PSIA 2010

set of specific sources, i.e. b049902e72-0049-1158-c0d2-7e330680d93c and

b049902e72-0049-1158-c0d2-7e330680755e, for video motion events between 10:30 and 10:45AM

on May 18th, 2009. Four matches (“matchElements”) were found that matched the search criteria.

Three of the match elements are video/audio/metadata segments corresponding to the same source
(see “sourceID”). The status combination of “true” and “OK” indicate a complete response. If there

had been more matches than the requester had allowed for reply, the status would have been “true”
and “MORE” in the “responseStatus” and “responseStatusStrg” fields respectively. The
“mediaURIDescriptor”s provided are exemplary only.

The first match, for source b049902e72-0049-1158-c0d2-7e330680d93c, has a segment, on
track #27, that is an MPEG-4 video segment. The next two matches are tied to the same source,

b049902e72-0049-1158-c0d2-7e330680755e, and are track segments (30 and 31, respectively) that
include both H.264 video and G.726 audio. The playback URIs within the match elements are
fictional examples that are syntactically correct. Match element playback URIs are opaque to the

requester; they are only required to contain whatever information the responder needs to playback the
corresponding media segment via RTSP.

<?xml version="1.0" encoding="UTF-8"?>

<CMSearchResult version="1.0" xmlns="urn:psialliance-org">

 <searchID>{812F04E0-4089-11A3-9A0C-0305E82C2906}</searchID>

 <responseStatus>false</responseStatus>

 <responseStatusStrg>NO MATCHES</responseStatusStrg>

 <numOfMatches>0</numOfMatches>

</CMSearchResult>

In this example, a valid search query had no matches for the original criteria provided.

<?xml version="1.0" encoding="UTF-8"?>

<CMSearchResult version="1.0" xmlns="urn:psialliance-org">

 <searchID>{812F04E0-4089-11A3-9A0C-0305E82C2906}</searchID>

 <responseStatus>true</responseStatus>

 <responseStatusStrg>INVALID TRACK ID</responseStatusStrg>

 <numOfMatches>1</numOfMatches>

 <matchList>

 <matchElement>

 <sourceID>{2040002e72-0049-1158-c0d2-7e3306803320}</sourceID>

 <trackID>11</trackID>

 <timeSpan>

 <startTime>2009-05-18T09:48.00</startTime>

 <endTime>2009-05-18T09:52:33</endTime>

 </timeSpan>

 <mediaSegmentDescriptor>

 <contentType>video</contentType>

 <codecType>MPEG4-ASP</codecType>

 <playbackURI>rtsp://144.70.13.92:554/PSIA/Streaming/tracks/11?offset=a07724</playbackURI>

 </mediaSegmentDescriptor>

 <metadataList>

 <metadataDescriptor>/metadata.psia.org/VideoMotion/motion</metadataDescriptor>

 </metadataList>

 </matchElement>

 </matchList>

</CMSearchResult>

In the above example, a search query was initiated that contained both a valid, and an invalid,
track ID. The responder, in this case, did not fail the search, but found a single match for the valid

track ID that was provided; a 4 ½ minute segment within track 11. It indicated that the overall
search was successful, but that there was a partial failure since one of the track IDs was invalid. This
example does not require the Content Managers to support partial operations. It only outlines the

potential for using the “responseStatus” and “responseStatusStrg” fields to indicate various levels of
completion.

Copyright PSIA 2010

9.2.2.2 Search Result Schema Definition

XSD: To get the latest version of all RaCM XSDs, including this one (cmSearchResult.xsd) please

download from the PSIA documents website: http://www.psialliance.org/documents_download.html

http://www.psialliance.org/documents_download.html

Copyright PSIA 2010

trackID (24)

trackChannelID (24)

trackID (24)

trackChannelID (24)

10 /PSIA/ContentMgmt/status

The Content Management resource hierarchy provides operational status information for
the following resources:

• The entire content base and the mount „volumes‟ that comprise the content base, as a
whole;

• Each track within the content base;

• Each input „channel‟, which are the equivalent to input streams;

• And, each input „source‟ (device or port), which can provide more than one input channel.

This status data is provided in the 4 basic categories listed above. The status information indicates
wellness, resource utilization, and basic attributes regarding the configuration of each resource.

The description of each of these categories follows

Figure: Example relationship between „source‟, „channel‟, and „track‟ Status values in NVR

In the NVR case, if Multi-Media recording is desired, then each „channel‟ must refer to a Multi-
Media stream, with the „channelURI‟ capable of acquiring a Multi-Media stream.

Copyright PSIA 2010

Figure: Example relationship between „source‟, „channel‟, and „track‟ Status values in DVR

In the DVR case, the local stream being recorded may be Multi-Media. For example, the

<TrackStatus>/<trackSource>/<sourceChannel> value of 10 is referring to
/PSIA/Streaming/channels/10 which strongly recommended to be bound to local
“/PSIA/System/Video/inputs/channels/10” and “/PSIA/System/Audio/channels/10” (if available).

10.1 /PSIA/ContentMgmt/status/volumes

For each RaCM device, there is at least one mounted „volume‟ that provides the logical storage
wherein the multimedia is managed (recorded, searched, played). The term “content base” addresses

all of the „mount volumes‟ that comprise the logical storage supporting the multimedia content. A
mount volume is referenced via configuration as a „Mount‟ (see
“/PSIA/ContentMgmt/record/storageMounts (Storage Allocation)”) within the storage

configuration‟s “MountList.” Each one of these configured “Mounts”, and the associated parameters,
comprises a “mountVolume”. The only difference is that in the configuration of each “Mount” a

“path”, and a directory (“dir”), are provided to setup recording of multimedia content. When status is
reported, the path and directory are concatenated a one complete path.

When reporting volume status, the overall state of the content base, as a whole, is always

reported, also. Querying entities may retrieve the status of the content base and all volumes via the
URI “/PSIA/ContentMgmt/status/volumes”, or for a specific volume via the URI

“/PSIA/ContentMgmt/status/volumes/<n>” where „<id>‟ is the Mount ID number of a specific
mount volume.

URI
/PSIA/ContentMgmt/status/volumeor

/PSIA/ContentMgmt/status/volumes/<n>
Type Resource

Requirement

Level
- All -

Function
Mandatory description of the REST method parameters and formats available

to functionally manipulate the „search‟ resource/object.

Methods Query String(s) Inbound Data Return Result

Copyright PSIA 2010

GET None None <CMStatusVolume>

PUT

N/A

N/A
<ResponseStatus w/error

code>

POST

N/A

N/A
<ResponseStatus w/error

code>

DELETE

N/A

N/A
<ResponseStatus w/error

code>

Notes

Volume status is relatively simple. A querying entity either issues a URI to get all

volume status (no Mount index is specified), or a URI is provided for a specific
volumes using the configured mount index. An XML document is returned with the
content base and volume status. Examples follow.

Example(s) <?xml version="1.0" encoding="UTF-8"?>

<CMStatusVolume version="1.0" xmlns="urn:psialliance-org">

 <contentBaseStatus>

 <contentBaseSize>970.6</contentBaseSize>

 <contentBaseSizeUnit>GBs</contentBaseSizeUnit>

 <contentBaseID>{409504E0-4F89-11D3-9A0C-0305E82C3301}</contentBaseID>

 <contentBaseStatus>

 <mountVolumeStatusList>

 <mountVolumeStatus>

 <mountVolumePath>d:/archive1</mountVolumePath>

 <mountVolumeSize>970.6</mountVolumeSize>

 <mountVolumeSizeUnit>GBs</mountVolumeSizeUnit>

 <mountVolumeMountID>1</mountVolumeMountID>

 <mountVolumeState>active</mountVolumeState>

 <mountVolumeDate>2009-05-18T10:31.26</mountVolumeDate>

 </mountVolumeStatus>

 </mountVolumeStatusList>

</CMStatusVolume>

In the above example, a RaCM device has a content base that consists of a single mount

volume that is 970.6 GBs. The content base has a GUID to uniquely identify it. The

mount volume ID, which is 1, matches the storage configuration (see

“/PSIA/ContentMgmt/record/storageMounts (Storage Allocation)”).

The volume is “active” which indicates that it is

successfully recording, etc. The „mountVolumeDate‟ indicates the setup/creation date

of for this mount volume.

Copyright PSIA 2010

<?xml version="1.0" encoding="UTF-8"?>

<CMStatusVolume version="1.0" xmlns="urn:psialliance-org">

 <contentBaseStatus>

 <contentBaseSize>2.4</contentBaseSize>

 <contentBaseSizeUnit>TBs</contentBaseSizeUnit>

 <contentBaseID>{e6229504E0-4F89-11D3-9A0C-0305E82C950c}</contentBaseID>

 <contentBaseStatus>

 <mountVolumeStatusList>

 <mountVolumeStatus>

 <mountVolumePath>/dev/hd0/archive1</mountVolumePath>

 <mountVolumeSize>1.2</mountVolumeSize>

 <mountVolumeSizeUnit>TBs</mountVolumeSizeUnit>

 <mountVolumeMountID>1</mountVolumeMountID>

 <mountVolumeState>locked</mountVolumeState>

 <mountVolumeDate>2007-10-22T13:40.17</mountVolumeDate>

 </mountVolumeStatus>

 <mountVolumeStatus>

 <mountVolumePath>/dev/hd1/archive1</mountVolumePath>

 <mountVolumeSize>1.2</mountVolumeSize>

 <mountVolumeSizeUnit>TBs</mountVolumeSizeUnit>

 <mountVolumeMountID>2</mountVolumeMountID>

 <mountVolumeState>active</mountVolumeState>

 <mountVolumeDate>2009-04-12T20:56.09</mountVolumeDate>

 </mountVolumeStatus>

 </mountVolumeStatusList>

</CMStatusVolume>

In the above example, a RaCM device has a 2.4TB content base comprised of two 1.2TB

mount volumes with the IDs “1” and “2”, respectively. The first volume has been

„locked‟; content can be actively searched, etc., but it is in a read- only mode.

The second mount volume is active.

<?xml version="1.0" encoding="UTF-8"?>

<CMStatusVolume version="1.0" xmlns="urn:psialliance-org">

 <contentBaseStatus>

 <contentBaseSize>8</contentBaseSize>

 <contentBaseSizeUnit>TBs</contentBaseSizeUnit>

 <contentBaseID>{e6229504E0-4F89-11D3-9A0C-0305E82C950c}</contentBaseID>

 <contentBaseStatus>

 <mountVolumeStatusList>

 <mountVolumeStatus>

 <mountVolumePath>/dev/hd0/content1</mountVolumePath>

 <mountVolumeSize>2</mountVolumeSize>

 <mountVolumeSizeUnit>TBs</mountVolumeSizeUnit>

 <mountVolumeMountID>1</mountVolumeMountID>

 <mountVolumeState>active</mountVolumeState>

 <mountVolumeDate>2009-02-12T03:57.01</mountVolumeDate>

 </mountVolumeStatus>

 <mountVolumeStatus>

 <mountVolumePath>//server10/archive1</mountVolumePath>

 <mountVolumeSize>6</mountVolumeSize>

 <mountVolumeSizeUnit>TBs</mountVolumeSizeUnit>

 <mountVolumeMountID>2</mountVolumeMountID>

 <mountVolumeState>errored</mountVolumeState>

 <mountVolumeDate>2009-02-12T03:57.53</mountVolumeDate>

 </mountVolumeStatus>

 </mountVolumeStatusList>

</CMStatusVolume>

In the above example, a RaCM device has an 8TB content base comprised of two mount volumes

with the IDs “1” and “2”, respectively. The first volume is mounted on local hardware

and is 2TBs in size. It is active. The second volume, which is 6TBs in size, utilizes

a remote mount (i.e. to a network-based machine) which is currently in an „errored‟ state.

This indicates that the „mount‟ is broken and no content is being recorded, nor is any

content on this volume currently accessible.

Copyright PSIA 2010

10.1.1 /PSIA/ContentMgmt/status/volume Attribute Definitions

The following tables and schemas define the attributes associated with reporting status for each
RaCM device‟s content base and the mount volumes that comprise that content base. The schema

name for this information is “CMVolumeStatus.” This schema is comprised of two major sections: A)
the content base status, and , B) the mount volume status list. Each content base has the following

status properties:

10.1.1.1 Content Base Status Attributes Table

Attribute Element Name Requirement Description

Content base

size
“contentBaseSize”
“contentBaseSizeUnit”

Mandatory

Two elements indicate the size of a
content base:

• “contentBaseSize” which is
the size indicated in ….

• “contentBaseSizeUnit” which
indicates the unit of measurement
for the size. This can be
megabytes, mebibytes, gigabytes,
gibibytes, terabytes, petabytes, or
exabytes.

Content base
ID

“contentBaseID” Mandatory

The 128-bit UUID/GUID that uniquely
identifies the content base. In simple
devices, this may be the same
UUID/GUID that identifies the device.

Content base
name

“contentBaseName” Optional
A human readable name for the content
base (if one is configured).

Content base

creation time
“contentBaseCreationTime” Optional

The „dateTime‟ of the creation/setup of
the content base.

10.1.1.2 Mount Volume Status Information Table

Following the content base status information, in the schema, is the mount volume status list. This
list contains one, or more, sets of information regarding the status of each mount volume in the
content base. For each mount volume, the following required status information is provided.

Attribute Element Name Requirement Description

Mount

path for
the

volume

“mountVolumePath” Mandatory The complete mount path for the volume
being reported. This includes the “path” and
“dir” settings setup in the storage
configuration (see
“/PSIA/ContentMgmt/record/storageMounts
(Storage Allocation)”).

The mount
volume‟s size

“mountVolumeSize”
“mountVolumeSizeUnit”

Mandatory The total size of the mount volume. Just like
the content base size (see above) the size
consists

of two elements: A) the decimal number, and
B) the unit used to report the size (e.g. MBs,

Copyright PSIA 2010

GBs, etc.).

The „mount
ID‟ of the
volume

“mountVolumeMountID” Mandatory This is the configured mount index of the
mount volume.

The
operational
state of the
mount
volume

“mountVolumeState” Mandatory Each mount volume must be in one of the
following states:

• “active”: everything is OK. Content
is being actively managed on the volume.

• “inactive”: The mount volume is
setup/configured but is currently inactive
(not due to error). Content may be
resident on the mount volume.

• “locked”. The referenced volume is
in

„read-only‟ mode.
• “errored”. A non-recoverable error
has taken the mount volume off-line and
into an inactive state.

• Mount volume active date: the
date/time the corresponding volume was
„activated‟ (i.e. put in service).

Mount
Volume
Date

“mountVolumeDate” Optional Creation/mount configuration data of the
referenced volume.

Mount

volume ID
“mountVolumeID” Optional An optional 128-bit UUID/GUID that

uniquely identifies the associated mount
volume.

Mount

volume

status string

“mountVolumeStateString” Optional,
should be
present; see
description.

For the „errored‟, „inactive‟, and „locked‟
states

(see above), an optional human readable status
string may be provided to help better describe
the stimulus for the state. This string should
be provided for all errors (i.e. “errored‟
states).

10.1.2 /PSIA/ContentMgmt/status/volume XSD

XSD: To get the latest version of all RaCM XSDs, including this one (cmVolumeStatus.xsd)
please download from the PSIA documents website:
http://www.psialliance.org/documents_download.html

10.2 /PSIA/ContentMgmt/status/sources

Each channel and track within a RaCM device‟s content base is correlated to a „source.‟
A source is the input device that originated the multimedia content managed by the RaCM

device. For each source, the RaCM content manager maintains a set of status attributes. These
status attributes relate to the source itself, the channels that source is inputting, and the track(s)
that correspond to that source. All sources are addressed, or identified, by a 128-bit

UUID/GUID (ISO/IEC 9834-8) assigned to that particular device. Status requesters can either
gather status for all active sources using the “/PSIA/ContentMgmt/status/source” URI, or for a
particular source using the “/PSIA/ContentMgmt/status/sources/<GUID>” URI where

“<GUID” is the UUID/GUID string for

http://www.psialliance.org/documents_download.html

Copyright PSIA 2010

the specific source being queried. The following attributes comprise the status information

contained in the XML schema for sources.

URI
/PSIA/ContentMgmt/status/sources or

/PSIA/ContentMgmt/status/sources/<GUID> Type Resource

Requirement

Level

- All -

Function
Mandatory description of the REST method parameters and formats available

to functionally manipulate the „search‟ resource/object.

Methods Query String(s) Inbound Data Return Result

GET None None <CMSourceStatus>

PUT N/A N/A <ResponseStatus w/error code>

POST N/A N/A <ResponseStatus w/error code>

DELETE N/A N/A <ResponseStatus w/error code>

Notes

Copyright PSIA 2010

Example(s)
<?xml version="1.0" encoding="UTF-8"?>

<CMSourceStatus version="1.0" xmlns="urn:psialliance-org">

 <sourceStatusList>

 <sourceStatus>

 <sourceID>{9034c22e-01aa-3887-4151-b9002ce36d5d}</sourceID>

 <sourceIPAddress>144.70.13.92</sourceIPAddress>

 <channelStatusList>

 <channelStatus>

 <channelID>1</channelID>

 <channelSource>{9034c22e-01aa-3887-4151- b9002ce36d5d}</channelSource>

 <channelURI>rtsp://144.70.13.92:554/PSIA/Streaming/channels/22</channelURI>

 <channelState>active</channelState>

 <channelType>

 <channelInputType>stream</channelInputType>

 <contentType>video</contentType>

 <codecType>MPEG4-SP</codecType>

 </channelType>

 </channelStatus>

 <channelStatus>

 <channelID>2</channelID>

 <channelSource>{9034c22e-01aa-3887-4151- b9002ce36d5d}</channelSource>

 <channelURI>rtsp://144.70.13.92:554/PSIA/Streaming/channels/30</channelURI>

 <channelState>active</channelState>

 <channelType>

 <channelInputType>stream</channelInputType>

 <contentType>audio</contentType>

 <codecType>G.726</codecType>

 </channelType>

 </channelStatus>

 </channelStatusList>

 <trackStatusList>

 <trackStatus>

 <trackID>1</trackID>

 <trackSize>620</trackSize>

 <trackSizeUnit>MBs</trackSizeUnit>

 <trackState>active</trackState>

 <trackMode>CMR</trackMode>

 <trackType>

 <contentType>video</contentType>

 <codecType>MPEG4-SP</codecType>

 </trackType>

 <trackSource>

 <trackSourceGUID>{9034c22e-01aa-3887-4151- b9002ce36d5d} </trackSourceGUID>

 </trackSource>

 <trackChannelID>0</trackChannelID>

 </trackStatus>

 <trackStatus>

 <trackID>2</trackID>

 <trackSize>38</trackSize>

 <trackSizeUnit>MBs</trackSizeUnit>

 <trackState>active</trackState>

 <trackMode>CMR</trackMode>

 <trackType>
 <contentType>audio</contentType>

 <codecType>G.711</codecType>

 </trackType>

 <trackSource>

 <trackSourceGUID>{9034c22e-01aa-3887-4151-b9002ce36d5d} </trackSourceGUID>

 </trackSource>

 <trackChannelID>1</trackChannelID>

 </trackStatus>

 </trackStatusList>

 </sourceStatus>

 <sourceStatus>

 <sourceID>{e70144c03-01aa-3887-4151-3e550991d377}</sourceID>

 <sourceIPAddress>144.70.13.88</sourceIPAddress>

 <channelStatusList>

 <channelStatus>

 <channelID>3</channelID>

 <channelSource>{e70144c03-01aa-3887-4151-3550991d3778}</channelSource>

<channelURI>rtsp://144.70.13.88:554/PSIA/Streaming/channels/10</channelURI>

 <channelState>active</channelState>

 <channelType>

 <channelInputType>stream</channelInputType>

 <contentType>video</contentType>

 <codecType>H.264-BP</codecType>

 </channelType>

 </channelStatus>
 <channelStatus>

 <channelID>4</channelID>

Copyright PSIA 2010

<channelSource>{e70144c03-01aa-3887-4151-3550991d3778}</channelSource>

 <channelURI>rtsp://144.70.13.88:554/PSIA/Streaming/channels/11</channelURI>

 <channelState>active</channelState>

 <channelType>

 <channelInputType>stream</channelInputType>

 <contentType>audio</contentType>

 <codecType>G.726</codecType>

 </channelType>

 </channelStatus>

 </channelStatusList>

 <trackStatusList>

 <trackStatus>

 <trackID>3</trackID>

 <trackSize>510</trackSize>

 <trackSizeUnit>MBs</trackSizeUnit>

 <trackState>active</trackState>

 <trackMode>CMR</trackMode>

 <trackType>

 <contentType>video</contentType>

 <codecType>H.264-BP</codecType>

 </trackType>

 <trackSource>

 <trackSourceGUID>{e70144c03-01aa-3887-4151-3550991d3778}</trackSourceGUID>

 </trackSource>

 <trackChannelID>2</trackChannelID>

 </trackStatus>

 <trackStatus>

 <trackID>4</trackID>

 <trackSize>38</trackSize>

 <trackSizeUnit>MBs</trackSizeUnit>

 <trackState>active</trackState>

 <trackType>

 <contentType>audio</contentType>

 <codecType>G.726</codecType>

 </trackType>

 <trackSource>

 <trackSourceGUID>{e70144c03-01aa-3887-4151-3550991d3778}</trackSourceGUID>

 </trackSource>

 <trackChannelID>3</trackChannelID>

 </trackStatus>

 </sourceStatus>

 </sourceStatusList>

</CMSourceStatus>

In the above example, a very simple scenario is depicted. A RaCM device has 2 input sources.

Each input source has 2 input channels (4 total), one each of video and audio. Each source

also has both of the video/audio channels being recorded as tracks. The first source,

“{9034c22e-01aa-3887-4151-b9002ce36d5d}‟, is an MPEG-4 camera/encoder with G.711 audio. Its

input „channels‟ are 1 & 2 as assigned by the RaCM device. These channels are „active‟ and

are being recorded on tracks 1 & 2, respectively. Please note that the channel and track

numbers are indigenous to the RaCM device; i.e. they are not the channel numbers of the IP

media device. Additionally, second source, “{e70144c03-01aa-3887-4151-3e550991d377}”,

which is an H.264 camera/encoder, is inputting video and audio (G.726) to the RaCM device

on „channels‟ 3 and 4. These „channels‟ currently „active‟ and are being recorded on tracks

3 and 4. This example depicts the minimum status information required. This example is also

for a small, simple device that is supporting only 2 inputs. Obviously, more sources,

channels, and tracks are possible, and probable. In this case, the URI for requresting status

was “/PSIA/ContentMgmt/status/sources” which rendered all of the sources for the RaCM device.

Copyright PSIA 2010

<?xml version="1.0" encoding="UTF-8"?>

<CMSourceStatus version=”1.0” xmlns="urn:psialliance-org">

 <sourceStatusList>

 <sourceStatus>

 <sourceID>{9034c22e-01aa-3887-4151-b9002ce36d5d}</sourceID>

 <sourceIPAddress>144.70.13.92</sourceIPAddress>

 <channelStatusList>

 <channelStatus>

 <channelID>8</channelID>

 <channelSource>{9034c22e-01aa-3887-4151-b9002ce36d5d}</channelSource>

 <channelURI>rtsp://144.70.13.92/streaming/channels/55</channelURI>

 <channelState>errored</channelState>

 <channelType>

 <channelInputType>stream</channelInputType>

 <contentType>video</contentType>

 <codecType>H.264-BP</codecType>

 </channelType>

 <channelStatusString>‟Network Connection Error‟</channelStatusString>

 </channelStatus>

 </channelStatusList>

 <trackStatusList>

 <trackStatus>

 <trackID>10</trackID>

 <trackSize>620</trackSize>

 <trackSizeUnit>MBs</trackSizeUnit>

 <trackState>idle</trackState>

 <trackMode>CMR</trackMode>

 <trackType>

 <contentType>video</contentType>

 <codecType>H.264-BP</codecType>

 </trackType>

 <trackSource>

 <trackSourceGUID>{9034c22e-01aa-3887-4151- b9002ce36d5d}</trackSourceGUID>

 </trackSource>

 <trackChannelID>8</trackChannelID>

 </trackStatus>

 </trackStatusList>

 </sourceStatus>

 <sourceStatusList>

</CMSourceStatus>

The above example depicts a source specific query. The source, at IP address 144.70.13.3,

has an error on its video input channel (channel 8 in this reference). Due to the channel

error, track „10‟ is currently in an idle state since it is receiving no data from the input

channel. The track status of „idle‟ indicates that the error is not with the recording media

or software (i.e. the track is active but receiving not data). The REST URI used to retrieve

this status info was:

“/PSIA/ContentMgmt/status/sources/9034c22e-01aa-3887-4151-b9002ce36d5d”

10.2.1 /PSIA/ContentMgmt/status/sources Status Attributes

The following status information is returned for each source. The following descriptions cover the
information contained in the XML Schema definition which follows in the subsequent section of

this document. The name of the schema is “CMSourceStatus”. It is comprised of a list of one, or
more, sources with the each source having the following status information associated with it.

10.2.1.1 Source Status Attribute Definitions

Attribute Element Name Requirement Description

Source ID “sourceID” Mandatory
128-bit UUID/GUID of the corresponding
source device

Source IP
Address

“sourceIPAddress” Mandatory

IPv4/IPv6 address of the source device. For
DVRs this is the IP address of the RaCM
device.

Copyright PSIA 2010

Source URI “sourceURI” Optional

URI of the source stream. This is a
convenience attribute. It cannot properly
describe the URI used for actual media
acquisition, if the Source produces multiple
streams. In that case, each produced stream
must be captured by different „channels‟ in
RaCM. The channelURI in the ChannelStatus
is the actual URI for media acquisition

Source
Description

“sourceDescription” Optional Informative description of the source since it
may be local or remote, on a DVR or NVR.

(Source‟s)
Channel
status list

“channelStatusList” Mandatory
Status list for input channels associated with
the source device. The format is covered in
Section 11.3

(Source‟s)
Track
Status List

“trackStatusList” Mandatory
Status list for the tracks associated with the
source device. The format is coverd in
Section 11.4.

As noted above, the specific formats of the channel and track status information are described in the
following sections of this document. The IP address and URI information is provided such that a

source can be uniquely identified on a network, and the information used to access the source device
can be validated.

10.2.2 /PSIA/ContentMgmt/status/sources XSD

As mentioned above, the status information for a source device consists of three primary
categories: A) source device information, B) channel status information for input channels

associated with the source device, and B) track status information for the tracks (recorded
multimedia content) associated with the referenced device.

XSD: To get the latest version of all RaCM XSDs, including this one (cmSourceStatus.xsd) please
download from the PSIA documents website: http://www.psialliance.org/documents_download.html

10.3 /PSIA/ContentMgmt/status/channels

As defined in the opening section of this document, the term „channels‟ refers to input data
streams for a RaCM device. These „channels‟ may be incoming IP-based multimedia streams (NVR
scenario) or physical input ports (DVR scenario). Either way, a channel corresponds to a specific

instance of a data stream. In other words, each video, audio, serial, and metadata input is a channel
unto itself. Sources (see prior Section) may originate multiple channels within one session, but each

data stream is its own „channel‟.

URI
/PSIA/ContentMgmt/status/channels or

/PSIA/ContentMgmt/status/channels/<id>
Type Resource

Requirement

Level

- All -

Function
Mandatory description of the REST method parameters and formats available to

functionally manipulate the „search‟ resource/object.

Methods Query String(s) Inbound Data Return Result

GET None None <CMChannelStatus>

PUT N/A N/A <ResponseStatus w/error code>

POST N/A N/A <ResponseStatus w/error code>

http://www.psialliance.org/documents_download.html

Copyright PSIA 2010

DELETE N/A N/A <ResponseStatus w/error code>

Notes

Copyright PSIA 2010

Example(s)
<?xml version=”1.0” encoding=”UTF-8”?>

<CMChannelStatus version=”1.0” xmlns=”urn:psialliance-org”>

 <channelStatusList>

 <channelStatus>

 <channelID>1</channelID>

 <channelSource>{9034c22e-01aa-3887-4151- b9002ce36d5d}</channelSource>

 <channelURI>rtsp://120.71.23.52/streaming/channels/10</channelURI>

 <channelState>active</channelState>

 <channelType>

 <channelInputType>stream</channelInputType>

 <contentType>video</contentType>

 <codecType>MPEG4-SP</codecType>

 </channelType>

 </channelStatus>

 <channelStatus>

 <channeleID>2</channeleID>

 <channelSource>{9034c22e-01aa-3887-4151- b9002ce36d5d}</channelSource>

 <channelURI>rtsp://120.71.23.52/streaming/channels/11</channelURI>

 <channelState>active</channelState>

 <channelType>

 <channelInputType>stream</channelInputType>

 <contentType>audio</contentType>

 <codecType>G.726</codecType>

 </channelType>

 </channelStatus>

 <channelStatus>

 <channelID>3</channelID>

 <channelSource>{e70144c03-01aa-3887-4151-3e550991d377}</channelSource>

 <channelURI>rtsp://150.81.23.12/streaming/channels/1</channelURI>

 <channelState>active</channelState>

 <channelType>

 <channelInputType>stream</channelInputType>

 <contentType>video</contentType>

 <codecType>H.264-BP</codecType>

 </channelType>

 </channelStatus>

 <channelStatus>

 <channelID>4</channelID>

 <channelSource>{e70144c03-01aa-3887-4151-3e550991d377}</channelSource>

 <channelURI>rtsp://150.81.23.12/streaming/channels/2</channelURI>

 <channelState>active</channelState>

 <channelType>

 <channelInputType>stream</channelInputType>

 <contentType>audio</contentType>

 <codecType>G.726</codecType>

 </channelType>

 </channelStatus>

 <channelStatus>

 <channelID>5</channelID>

 <channelSource>{ff0144c03-01aa-3887-4151-33950991d38c}</channelSource>

 <channelURI>rtsp://110.30.15.77/streaming/channels/22</channelURI>

 <channelState>active</channelState>

 <channelType>

 <channelInputType>stream</channelInputType>

 <contentType>video</contentType>

 <codecType>MPEG4-ASP</codecType>

 </channelType>

 </channelStatus>

 <channelStatus>

 <channelID>6</channelID>

 <channelSource>{108144c03-01aa-3887-4151-33950991f81f}</channelSource>

 <channelURI>rtsp://110.30.15.77/streaming/channels/23</channelURI>

 <channelState>active</channelState>

 <channelType>

 <channelInputType>stream</channelInputType>

 <contentType>video</contentType>

 <codecType>H.264-MP</codecType>

 </channelType>

 </channelStatus>

 </channelStatusList>

</CMChannelStatus>

The above example is for a hypothetical NVR that has 6 input SINGLE-MEDIA streams (3 video +

3 audio) coming in from 3 different sources. All tracks are active.

Copyright PSIA 2010

<?xml version=”1.0” encoding=”UTF-8”?>

<CMChannelStatus version=”1.0” xmlns=”urn:psialliance-org”>

 <channelStatusList>

 <channelStatus>

 <channelID>1</channelID>

 <channelSource>{a534c22e-01aa-3887-4151- b9002ce36d72}</channelSource>

 <channelURI>rtsp://localhost/PSIA/Streaming/channels/1</channelURI>

 <channelState>active</channelState>

 <channelType>

 <channelInputType>port</channelInputType>

 <contentType>video</contentType>

 <codecType>H.264-BP</codecType>

 </channelType>

 </channelStatus>

 <channelStatus>

 <channelID>2</channelID>

 <channelSource>{a534c22e-01aa-3887-4151- b9002ce36d72}</channelSource>

 <channelURI>rtsp://localhost/PSIA/Streaming/channels/2</channelURI>

 <channelState>errored</channelState>

 <channelType>

 <channelInputType>port</channelInputType>

 <contentType>video</contentType>

 <codecType>H.264-BP</codecType>

 </channelType>

 <channelStatusString>”No Video Signal”</channelStatusString>

 </channelStatus>

 <channelStatus>

 <channelID>3</channelID>

 <channelSource>{a534c22e-01aa-3887-4151-b9002ce36d72}</channelSource>

 <channelURI>rtsp://localhost/PSIA/Sstreaming/channels/3</channelURI>

 <channelState>active</channelState>

 <channelType>

 <channelInputType>port</channelInputType>

 <contentType>video</contentType>

 <codecType>H.264-BP</codecType>

 </channelType>

 </channelStatus>

 <channelStatus>

 <channelID>4</channelID>

 <channelSource>{a534c22e-01aa-3887-4151- b9002ce36d72}</channelSource>

 <channelURI>rtsp://localhost/PSIA/Streaming/channels/4</channelURI>

 <channelState>inactive</channelState>

 <channelType>

 <channelInputType>port</channelInputType>

 <contentType>video</contentType>

 <codecType>H.264-BP</codecType>

 </channelType>

 <channelStatusString>”Disabled”</channelStatusString>

 </channelStatus>

 </channelStatusList>

</CMChannelStatus>

The above scenario is for a 4-port DVR. All of the channels are hardware based, not IP- based.

The source ID for all of the channels/ports is the UUID/GUID of the RaCM DVR device (i.e. a

self reference). Channel #1 (2nd channel) is in an “errored” state because it is not receiving

a video signal. Channel #3 is inactive because an administrative action disabled the port (i.e.

forced it to an “inactive” state).

The “CMChannelStatus” schema defines all the related channel status information.

Channels report status via a channel status list. Each enty in the list utilizes the following status
attribute definitions.

10.3.1 /PSIA/ContentMgmt/status/channels Status Attributes

Attribute Element Name Requirement Description

Copyright PSIA 2010

Channel ID “channelID” Mandatory Integer ID (index) of the input
channel

Channel
Source “channelSource” Mandatory

128-bit UUID/GUID of the source
device. For NVRs this is the
UUID/GUID of the remote source
device. For DVRs, this is the
UUID/GUID of the DVR device
itself.

Channel URI “channelURI” Mandatory
URI used to access this „channel‟s
media.

Channel
State

“channelState” Mandatory The state of the input channel: State
values are:

•“active”: normal operative state.

•“idle”: channel is OK and active,
but not data is being received in the
present state.

•“inactive”: the channel is
inoperative due to recording mode or
administrative intervention (i..e. a
non-error condition).

“errored”: the channel has
encountered and error and is not
receiving data.

Channel
Type

“channelType” Mandatory All input channels are one of 2
possible types:
•“port”: a physical input port is the
source of the stream (e.g. composite
video).
•“stream”: the input stream is
logical; i.e. it is an IP-based data
stream (RTP, HTTP, etc.)

Channel
Status

String

“channelStatusString” Mandatory /
Optional;

Mandatory for
Channel State
“errored”

Optional human-readable text string
describing the current channel state.
This string is MANDATORY for the
channel state “errored” (see above).

The above status information is reported for the channels on a RaCM device in a list

(“channelStatusList”). When a status requester „GETs‟ channel status, it can either A) get all of
the channels on a RaCM device (URI:”/PSIA/ContentMgmt/status/channels”), or B) it can get
status for a particular channel. In the latter case, the requester must specify the target channel by

referencing the channel ID in the URI (e.g. “/PSIA/ContentMgmt/status/channels/<id>”) where
“<id>” is the channel ID (see above) for the target channel. Information regarding the specifics

of the status information is contained in the following schema definition section.

10.3.2 /PSIA/ContentMgmt/status/channels XML Schema

Definition

XSD: To get the latest version of all RaCM XSDs, including this one (cmChannelStatus.xsd)
please download from the PSIA documents website:
http://www.psialliance.org/documents_download.html

http://www.psialliance.org/documents_download.html

Copyright PSIA 2010

10.4 /PSIA/ContentMgmt/status/tracks

All recorded information for a given RaCM device is recorded onto one, or more, „tracks‟.

As described earlier in this specification, tracks are virtual containers. They may, or may not,
correspond to a file, or set of files, etc. Basically, a track is a handle to specific type of

multimedia information (e.g. video or audio) from a specific source. The PSIA places no other
constraints on the implementation of tracks. For status information, tracks, just like channels,
render specific status attributes for each track, in a list. For generic status queries (i.e. all tracks),

the list contains information about all tracks on a RaCM device. The URI for gathering status on
all tracks is “/PSIA/ContentMgmt/status/tracks.” A specific track can be queried for its status

information using the URI “/PSIA/ContentMgmt/status/tracks/<id>” where “<id>” is the ID
number of the target track. In order to keep status gathering simple, no schemas are employed to
query status; only the REST URIs are employed. If an entity needs to gather information on

subsets of all the tracks, then individual queries need to be made per track, track information
needs to be gathered by source (see above Section 11.2).

URI
/PSIA/ContentMgmt/status/tracks or

/PSIA/ContentMgmt/status/tracks/<id> Type
Resource

Requirement

Level
- All -

Function
Mandatory description of the REST method parameters and formats available to

functionally manipulate the „search‟ resource/object.

Methods Query String(s) Inbound Data Return Result

GET None None <CMChannelStatus>

PUT N/A N/A <ResponseStatus w/error code>

POST N/A N/A <ResponseStatus w/error code>

DELETE N/A N/A <ResponseStatus w/error code>

Notes

Example(s)
<?xml version="1.0" encoding="UTF-8"?>

<CMTrackStatus version=”1.0” xmlns="urn:psialliance-org">

 <trackStatusList>

 <trackStatus>

 <trackID>19</trackID>

 <trackSize>320.6</trackSize>

 <trackSizeUnits>MBs</trackSizeUnits>

 <trackState>active</trackState>

 <trackType>

 <contentType>video</contentType>

 <codecType>MPEG4-SP</codecType>

 </trackType>

 <trackMode>CMR</trackMode>

 <trackSource>

 <trackSourceID>{9034c22e-01aa-3887-4151- b9002ce36d5d}</trackSourceID>

 </trackSource>

 <trackChannelID>11</trackChannelID>

 </trackStatus>

 </trackStatusList>

</CMTrackStatus>

The above example is for a status query for a specific track; in this case track #19. This

track contains MPEG-4 video data. This example contains the minimum information required

for a track.

Copyright PSIA 2010

<?xml version="1.0" encoding="UTF-8"?>

<CMTrackStatus version=”1.0” xmlns="urn:psialliance-org">

 <trackStatusList>

 <trackStatus>

 <trackID>12</trackID>

 <trackSize>416</trackSize>

 <trackSizeUnits>MBs</trackSizeUnits>

 <trackState>active</trackState>

 <trackType>

 <contentType>video</contentType>

 <codecType>H.264-BP</codecType>

 </trackType>

 <trackMode>CMR</trackMode>

 <trackSource>

 <trackSourceGUID>{9034c22e-01aa-3887-4151- b9002ce36d5d}</trackSourceGUID>

 </trackSource>

 <trackChannelID>8</trackChannelID>

 <trackTimeRange>

 <trackOldestTime>2009-05-12T09:17:06</trackOldestTime>

 <trackNewestTime>2009-06-14T13:22:43</trackNewestTime>

 </trackTimeRange>

 <trackObjects>2608012</trackObjects>

 <trackVersion>1.1</trackVersion>

 <trackCreationDate>2009-05-12T09:17:06</trackCreationDate>

 <trackMountVolumeID>1</trackMountVolumeID>

 <trackUtilization>79.6</trackUtilization>

 </trackStatus>

 </trackStatusList>

</CMTrackStatus>

The above example is for a status query for a specific track; in this case track #12. This track

contains H.264 video data. This example contains the maximum information that can be reported

for a track.

10.4.1 /PSIA/ContentMgmt/status/tracks Status Attributes

Status information for each track consists of both mandatory status attributes, and optional

items. The optional items provide greater insight into the status of the content of a track and its
basic storage attributes. The track status attributes are listed in the following table

Attribute Element Requirement Description

Track ID “trackID” Mandatory
Track ID number of the specific
track being reported

Track Size “trackSize”
“trackSizeUnit”

Mandatory The size of the track. This is reported in
2 parts:
•A number in “trackSize”
indicating the current size of the
referenced track in….
•The unit used to report the size
(“trackSizeUnit”). Units are MBs.
GBs, TBs, PBs, MiBs, GiBs, and XBs.

Track
State

“trackState” Mandatory The operating state of the track. State
choices are:
•“active”: track is OK and actively
recording.:

•“idle”: track is OK but not receiving
data.:

•“inactive”: track is dormant.

•“locked”: track has been put into
“read- only” mode.

•“errored”: track has encountered an
error and is not recording.

Copyright PSIA 2010

Track Type “trackType” Mandatory The type of the reported track:

•“contentType” indicates of the
track is video, audio, metadata,
text or mixed (polymorphic).

•“codecType” indicates the primary
codec format / protocol of the track.
(see Appendix A)

Track
Mode

“trackMode” Mandatory The recording mode of the track:

•“CMR”: Continuous Mode
Recording(time-lapsed, or loop-based
recording).

•“EDR”: Event Driver Recording.

•“CMR-Scheduled”: track is in CMR
mode based on a schedule (track is
multi-modal).

•“EDR-Scheduled”: track is in
EDR mode based on a schedule
(track is multi-modal).

•“Manual Recording”: track is
recording based on user driven
activity.

Track

Source
“trackSource” Mandatory The track source varies based on

whether the input is an IP-based device
(NVR scenario), or a hardware based
input port (DVR scenario). The following
are used to identify track sources:
•IP-based input = 128-bit UUID/GUID
of the source device.

•Hardware based input = Channel ID
of the local port-based stream RaCM
device.

Track‟s

Channel ID
“trackChannelID” Mandatory /

Optional
For all scenarios where the
channels are still
operative/configured on a RaCM
device, the channel ID must be
provided. Otherwise, this data is
not required.

Track

Status

String

“trackStatusString” Mandatory /
Optional

For the “errored” track state (see
above), this is a required string that
provides a human readable status
description of the error encountered.
For all other states, this string is
optional.

Track

Time
Range

“trackTimeRange” Optional Oldest/newest timestamps of the data
contained within a track.

Track‟s

Number of
Objects

“trackObjects” Optional Number of objects (i.e. frames,
GOPs/GOVs, events, etc.) contained in
the track.

Track
Version

“trackVersion” Optional Version of the track‟s
format/implementation.

Track‟s
Creation
Date

“trackCreation” Optional Creation „dateTime‟ of the track.

Track‟s

Mount

“trackMountVolumeID” Optional One, or more, Mount Volume ID
numbers referencing the mount

Copyright PSIA 2010

Volume ID volumes that the track occupies.
Track

Utilization
“trackUtilization” Optional Float indicating the percentage of

utilization of the allocated track space
(i.e. “24.7” = %24.7).

10.4.2 /PSIA/ContentMgmt/status/tracks XSD

XSD: To get the latest version of all RaCM XSDs, including this one (cmTrackStatus.xsd) please

download from the PSIA documents website: http://www.psialliance.org/documents_download.html

http://www.psialliance.org/documents_download.html

Copyright PSIA 2010

11 Streaming and Playback

RaCM devicea must offer PSIA compliant streaming services for the playback of recorded

media information. For RaCM devices that also offer the ability to serve live streams to clients, and
other multimedia consumers, as a proxy server, these streams must also be provided in a PSIA

compliant manner. The requirements for multimedia streaming are specified in the “PSIA IP Media
Device API Specification.”, Sections 5.1 (“Media Streaming, Streaming with RTSP and SDP”) and
7.12 (“/Streaming”) and its subsections. These sections of the IP Media Device specification cover

just live streaming. Additionally, a RaCM device has the ability to stream recorded data, and the
ability to configure incoming streams (i.e. “channels”) indirectly via track configuration using the
„/ContentMgmt/record‟ service. Due to these unique functional differences, the following

exceptions, qualifications, and additions to the IP Media Device specification

11.1 Streaming URIs

11.1.1 Live Streams

The IP Media Device specification, Section 5.1.2, specifies the following URI structure for a
client/consumer to initiate and RTSP Streaming session:

rtsp://<address>:<port>/Streaming/Channels/<id>(?parm1=value1&parm2-=value2…)

This is compatible with channel definitions for RaCM devices as well. All input streams, port or
network-based, are mapped to RaCM device „channels‟ identified by channel IDs. Each track, in its

configuration, and status, information also contains the corresponding channel ID for its input stream.
So, channel IDs can be obtained by reading either the track configuration information (see
“/PSIA/ContentMgmt/record/tracks (Recording Session Configuration)”) or the track status

information (see “/PSIA/ContentMgmt/status/tracks”).
Additional support for the description of multiple channels, not necessarily from the same

source is provided by adding channel IDs to an RTSP URI. In these cases, the parameter tag

“channel=” is used for each additional channel. The following example depicts this case.

rtsp://10.1.2.55/Streaming/channels/7?channel=8&channel=11&channel=20

In the above example, a client desires to retrieve an RTSP description of channels 7, 8, 11, and 20.

Please note that this RTSP URI construct will only work for the RTSP DESCRIBE message/method.

11.1.2 Archive Streams

RaCM devices record multimedia information onto „tracks‟ which are accessible for RTSP

Copyright PSIA 2010

Streaming via 2 identification methods: A) track IDs, and B) source device UUID/GUIDs. The first

requirement is obvious; a consumer desires a playback stream from a specific track. The URI
structure for Streaming this media information is:

rtsp://<address>:<port>/Streaming/tracks/<id>(?parm1=value1&parm2-=value2…)

The above 2 URI constructs are direct derivatives of the PSIA REST resource hierarchy for
media information and match the RaCM notations described herein. Additionally, a
client/consumer that establishes an RTSP session to a RACM device and issues a “DESCRIBE” (see

RFC 2326), for a channel or track, only receives an SDP description of the media information for
that specific, channel or track, not for an entire “presentation” (see RFC 2326). For the use of time as

a parameter in the management of streaming sessions, please see “Time-related Streaming” below
Also, as is noted for live streaming, above, requesters may gather RTSP descriptions for

multiple tracks by appending additional track IDs to the end of an RTSP DESCRIBE URI as query

parameters. The parameter value tag for each additional track ID is “track=”. The URI below is an
example of a multi-track RTSP DESCRIBE URI.

rtsp://10.1.2.55/Streaming/tracks/19?track=20&track=27&track=28

In the above URI example, a requester is attempting to retrieve an RTSP/SDP description of multiple
tracks via a single message. In this case, the requester wants an SDP description for tracks 19, 20,
27, and 28. This prevents a requester/client from having to issue multiple „DESCRIBEs‟ to get

multi-track media attributes. There is one restriction: when imposing a time range on a DESCRIBE,
all of the tracks, in a multi-track URI, must share the same time range. This is described in more

detail in Section 12.1.4 below.

11.1.3 Source-based Streaming

For clients/consumers that desire to receive RTSP-based streamed media information for all

channels, or tracks, from a specific source device, the following URI structure

rtsp://<address>:<port>/Streaming/sources/<GUID>/<type>

The field “<GUID>” in the above URI template references the 128-bit UUID/GUID of the target
source device. The “<type>” field is required to differentiate between „live‟ and „archived‟ media
content via the following tags:

• “channels”: indicates „live‟ media data, and

• “tracks”: indicates archived content.

The following source-based URI examples are provided:

rtsp://10.1.2.55/Streaming/sources/{91c0822d4-033f-5a01-00a7-498330c09f5b}/channels

The above example references a client‟s desire to receive an RTSP DESCRIBE that lists all of the

live media streams that a source device provides via a RaCM device. This is useful for source
devices that are originating video and audio, and potentially, metadata/events. The DESCRIBE‟s

SDP response would list all of the available channels for that specific input device. This enables
client/consumers to SETUP multiple channels in a single RTSP session (see RFC 2326; setup via
multiple RTSP sessions is also supported, though less efficient).

rtsp://10.1.2.39:554/Streaming/sources/{91c0822d4-033f-5a01-00a7-498330c09f5b}/tracks

The above example references a URI that causes an RTSP DESCRIBE operation to return an SDP

Copyright PSIA 2010

description of all the tracks on a RaCM device that may be streamed to a client/consumer associated

with a specific source device.

All source-based Streams MUST utilize the above URI structure complete with the “type” tag for

RTSP session initiation and setup. A source-based URI that does not list the “type” tag is an error
and will result in an RTSP failure. For client/consumers that desire to see all of the channels and

tracks associated with a specific source device, the following section

Streaming Operations.

11.1.4 Time-related Streaming

For archive streams, whether track or source-based in notation, there usually is a time
component that indicates the desired time range with respect to a track or source. In the cases where

a consumer needs to specify the specific time range associated with a streaming session, URI request
line parameters are employed for defining the specific time range. The following parameter tags are
used:

• “starttime”: This parameter tag indicates that it will be followed by and ISO 8601
timestamp indicating the start time of the media stream the consumer is targeting for

description, setup, or playing.

• “endtime”: This parameter tag indicates that it will be followed by an ISO 8601 time stamp

indicating the ending time the consumer desires to be the termination point for a media
stream. This parameter field is optional. If it is not present, the stream is to proceed from
the start time until the session is manually terminated, or paused, by the consumer.

The format of the time stamps is ISO 8601 as specified in Section 3.7 of RFC 2326, “Absolute Time.‟
This format is almost identical to XML „dateTime‟ except there are no dashes to separate the fields.

Basically, the format is: YYYYMMDD”T”HHmmSS.fraction”Z” where Y=year, M=month, D=day,
“T” is the time separator, H=hour, m=minutes, S=seconds, and “Z” is the optional field indicating
Zulu (GMT) time. A time stamp example is: “20090526T13:42.58Z” which represents

May 26th, 2009 at 1:42.58 PM GMT.
Given the above formatting information, a client using RTSP session management would

append the time stamps to the end of its URI (either track or source-based) as a way of designating
the target timeframe associated with a streaming session. A track-based example follows:

rtsp://10.1.2.39:554/Streaming/tracks/18?starttime=20090731T092241.06Z&endtime=20090731T093000Z

In the above example, a requester desires to describe/setup/play a media stream that spans the time
range on July 31st, 2009 from 9:22.06AM GMT to 9:30AM GMT.

As noted in Section 12.1.2, when multiple tracks are identified in a single RTSP URI, they
can only share one time range. This restriction is instated to prevent run-on URIs that exceed
standard buffer length allocations.

The appending of timestamps as parameters to a URI request line is pertinent for all URIs,
even those returned by the „SearchResponse‟ since a requester may not desire an entire time

segment. Please reference RFC 2326 for more details on URI and parameter formats.

11.2 Streaming Configuration and Status

All RaCM devices must support the ability to play live input video/audio streams to clients as a live

Copyright PSIA 2010

stream server as outlined in the IP Media Device specification. However, the ability to modify codec

settings, that affect the corresponding streams, varies with respect to DVR versus NVRs. These areas
are covered in Sections 7 and ?? of this document. Streaming parameters that are independent of the

source codec setting are described in this section of the document.

11.2.1 Streaming Status

The IP Media Device specification in IPMD Sections 7.12.1and 7.12.4 specifies REST
interfaces for getting status information on live channels and on sessions. Since RaCM devices

already provide the equivalent information in the ContentMgmt/status service functions, these
sections are optional and not required for implementation by RaCM devices. It is recommended that

RaCM devices implement these interfaces for interoperability reasons.

11.2.2 QoS Parameter for playback (new v1.1)

See the IP Media Device specification in Sections 7.4.22 – 7.4.25 for static QoS settings per network
interface and per media class/type (i.e. /PSIA/System/Network/interfaces/<ID>/qos/cos and

/PSIA/System/Network/interfaces/<ID>/qos/dscp). The values set here for <TrafficType>„s of
“video” and “audio” will apply.

In addition to IPMD, RaCM allows the following overrides, on a per-request basis, via the Query
String parameters shown here:

rtsp://<uri_base>?dscp=<code>

rtsp://<uri_base>?cos=<priority>

rtsp://<uri_base>?dscp=<code>&cos=<priority>

Where <uri_base> refers to the URI‟s described in Section 14.1.

(Note also that, in a XML document, the ampersand must be encoded as “&” -- See “XML
Reserved Characters”)

Differentiated Services

The “dscp=” Query String parameter is used to request use of a DiffServ codepoint value (6 bit
value, given in decimal range of 0-63) for the data stream.

RFC2597 (Assured Forwarding) defines the following codepoints:

 Class 1 Class 2 Class 3 Class 4
Low Precedence Binary 001010

“AF11” / dscp=10
Binary 010010

“AF21” / dscp=18
Binary 011010

“AF31” / dscp=26
Binary 100010

“AF41” / dscp=34
Medium Precedence Binary 001100

“AF12” / dscp=12
Binary 010100

“AF22” / dscp=20
Binary 011100

“AF32” / dscp=28
Binary 100100

“AF42” / dscp=36
High Precedence Binary 001110

“AF13” / dscp=14
Binary 010110

“AF23” / dscp=22
Binary 011110

“AF33” /dscp=30
Binary 100110

“AF43” / dscp=38

Copyright PSIA 2010

Note that for translation to simple priority levels, the priority number generally increases to the

right/bottom of the table.

RFC2598 (Expedited Forwarding) defines codepoint: Binary 101110, “EF” / dscp=46.

RFC2474 (Differentiated Services) also defines “Class Selector” code points, Binary xxx000, using

the upper precedence bits in same was as legacy TOS Precedence values.

IEEE 802.1p / 802.1q – Class of Service

The “cos=” Query String parameter is used to request an IEEE 802.1p priority level (3 bit value, if

supported by the local network) for the data stream.

Priority Traffic Type

0 Best Effort

1 Background

2 Spare

3 Excellent Effort

4 Controlled Load

5 Video

6 Voice

7 Network Control

Multiple QoS Parameters

It is possible to specify both QoS override parameters (e.g. both Class of Service and a DiffServ

codepoint), which would be interpreted as enabling both, wherever applicable; however, the actual
behavior will be dependent on the network capability and administrative guidelines.

Copyright PSIA 2010

11.3 Streaming Operations

This section provides an operational overview of some of the key design aspects regarding
how client, management applications, and consumers can „find‟ and access the live media streams
they desire to receive from a compliant PSIA RaCM device that provide streaming proxy/server

functionality. Streams are usually accessed via parameters associated with one of the following
methods:

• Media type

• Source

• Track association

• Search

A description of each of these methods, and how they can be employed using the standard
RaCM interfaces, follows.

Media type: The Media type method identifies operations where an entity wants to see all, or some,
channels of a particular media/content type (e.g. „video‟, „audio‟, „metadata‟, etc.). An entity can

detect the appropriate channel types via 2 RaCM interfaces: A) “/PSIA/ContentMgmt/record/tracks
(Recording Session Configuration)”, or B) “/PSIA/ContentMgmt/status/channels”. The first interface

supplies track configuration information which contains the media/content type parameters and the
associated channel ID for each track (also the Source‟s UUID/GUID). The second interface provides
the content/media type information for each channel along with the codec type and the Source

UUID/GUID of the source device. Using this information an entity can the access the desired
channel using the supplied channel IDs.

Source: The Source method refers to entities that desire to get the attributes of all the streams
associated with a particular source device/endpoint. These types of operations are usually related to a

particular scene or field-of-view (FoV). Information regarding the streams assocated with one, or
more, sources can be obtained 2 primary ways: A) via Source status information

(“/PSIA/ContentMgmt/status/sources”), or B) via track configuration information
(“/PSIA/ContentMgmt/record/tracks (Recording Session Configuration)”). Using the source status
interface, an entity can get the status information on all sources. For each source, the status

information containts the UUID/GUID of the associated source plus a complete channel list and
track list. Each channel and track list has their IDs, content/media types and codec types. Using

track configuration information is a less direct way to get the source IDs, but the information is
present. Once an entity has a source‟s UUID/GUID, it can issue an RTSP streaming session
using the URI structure outlined in “Streaming URIs”, above, and receive an SDP description of

all the source‟s media streams.

Track Association: All track information in both the track configuration attributes
(“/PSIA/ContentMgmt/record/tracks (Recording Session Configuration)”) and in the status
information provided for tracks, and sources, contains the corresponding channel IDs for the input

streams linked to the respective track.

Search: Presently, the Content Management Search services are only for recorded content.

However, the Search responses always contain the track IDs for each of the „matches‟ to a search

Copyright PSIA 2010

(see Section “/PSIA/ContentMgmt/search (Search Service and Resources)”). Using these track IDs,

an entity deciding to access the corresponding live media can get the channel ID for a particular
track using either: A), the track‟s configuration information (“/PSIA/ContentMgmt/record/tracks
(Recording Session Configuration)”), or B) track status information

(“/PSIA/ContentMgmt/status/tracks”). Once the channel ID is obtained, the appropriate RTSP
Streaming URI can be constructed (see “Streaming URIs”).

11.4 Playback

11.4.1 Playback Requirements

This sect ion describes the requirements for the replay protocol. Note: These requirements apply to

the protocol i tse lf, not any implementation of i t.

1. The replay mechanism must support the following client operations:

• Start playback from a spec ific source, from a spec ific t ime.

• Play forwards at any speed (both fas ter and s lower than real t ime)

• Play backwards at any speed (both fas ter and s lower than real time)

• Play I-frames only, or a subset of the I-frames, to reduce bandwidth and c l ient process ing

requirements and al low very fas t playback in either direc t ion.

• Pause/resume playback

• Step forwards by a s ingle frame (when in paused mode)

• Step backwards by a s ingle frame (when in paused mode)

Note that this does not imply that the replay protocol must include methods corresponding to
each of these operations, only that the protocol must facilitate the implementation of these

operations by the client application.
2. The replay mechanism shall allow lossless playback. It must be possible to play back

stored footage with no loss of information, regardless of network conditions, such that clients
are always able to display every frame that was successfully recorded.
(This does not preclude a “lossy” mode in addition to this).

3. Every frame shall have an stable, absolute timestamp. Each frame must carry a

timestamp indicating the absolute time at which it was captured by the NVT. These
timestamps must be communicated to the client during replay (either directly or

indirectly). The replay mechanism shall support timestamps with at least millisecond
accuracy.

4. Synchronization of audio/video/metadata. The replay mechanism must make it possible

for a client to accurately synchronize audio and video streams, and to associate timestamped

metadata items with individual frames.

5. Synchronization of multiple streams. The replay mechanism must make it possible for a

client to accurately synchronize playback of media streams from different sources, and to

allow users the same playback control operations with synchronized streams (as detailed in
requirement 1 as are available with single streams.

Copyright PSIA 2010

6. The replay mechanism shall support standard players. It shall be possible for standard

players such as QuickTime and VLC to replay stored footage, although not necessarily with
the same functionality that might be available to an ONVIF-aware client.

11.4.2 Usage patterns

The usage pat terns for video replay within a CCTV contex t are s ignificantly different from those of
most internet video applicat ions, where users typically play a c lip or presentat ion from s tart to finish,
perhaps paus ing occas ionally . When reviewing CCTV footage on the other hand, users typically play

forwards for only short periods o f time, but frequent ly pause, s ingle s tep, jump to different points in
t ime, fas t forward and rewind.

11.4.3 Use of RTSP

The rep lay protocol is based on RTSP [RFC 2326] . Howeve r because RTSP does

not directly support al l of the requirements , there are defined several ex tensions to
the protocol; these are detailed below.

In addit ion, we make the fol lowing s t ipulations on the usage of RTSP:

1. Interleaved mode ([RFC 2326] section 10.12) MUST be supported by the RACM DEVICE.

2. Clients SHOULD use either interleaved mode or RTP/TCP (i f supported) in order

to satisfy requirement 2 above.

3. The RACM DEVICE MAY elect not to send RTCP packets during replay. In typical usage, at least with

an ONVIF-aware client, RTCP packets are not required, because usually a reliable transport will be
used, and because absolute time information is sent within the stream, making the timing information in
RTCP sender reports redundant.

11.4.4 RTP header extension

• In order to sat is fy requirement 3, we need to be able to assoc iate an absolute t imestamp

with each packet, or each group of packets with the same RTP t imestamp (e.g. a video frame). This is
achieved us ing an RTP header extens ion containing an NTP t imestamp and some
addit ional informat ion also useful for replay .

• The rep lay mechanism uses the ex tens ion ID 0xABAC (tbd) for the rep lay
ex tens ion.

• Below shows the ge neral form of an RTP packet contain ing th is
ex tens ion:

V=2 P X=1 CC M PT sequence number

Timestamp
synchronization source (SSRC) identifier

0xABAC length=3
NTP timestamp…
...NTP timestamp

C E D mbz Padding/Frame Type Indicator (FTI, optional)
Payload…

Copyright PSIA 2010

• The fields of this ex tens ion are as follows:

• NTP t imestamp. An NTP [RFC 1305] timestamp indicating the absolute UTC time assoc iated with

the access unit .

• C: 1 bit . Indicates that this access unit is a “clean point ”, e.g. the s tart of an int ra-coded frame in the
case of video s treams.

Copyright PSIA 2010

• E: 1 bit. Indicates the end of a contiguous sect ion of recording. The las t access unit in each track
before a recording gap, or at the end of available footage, SHALL have this bit set.

• D: 1 bit . Indicates that this access unit follows a discontinuity in t ransmiss ion. It is primari ly used

during re verse rep lay ; the firs t packet of each GOP has the D bit set s ince i t
does not chronologically follow the previous packet in the data s tream.

• Fram e Type Indicator (FTI): This opt ional field provides addit ional in fo rmat ion about the type of
vi deo unit (frame, s l ice) that is present in the MTU pay load. Since this field is opt ional, i f an FTI is

present , the firs t 2 oc tets of this field, wh ich is t reated as a 3-oc tet s tring, are set to 0x46, 0x49 (“F I”
ASCII) to indicate the presence of the frame type. The las t octet, the on adjacent to the Pay load,
has the following format:

• The high orde r bit is the Frame bit . If this bit is ON (mask |= 0x80), then
the video unit is a frame. If this bit is OFF (mask =0x7F), the video unit is

a sub- frame indicat ing for H.264 media s t reams that i t is a sl ice. Where a
s l ice equals a frame, the frame bi applies .

• The low order 7 bits indicate the type of frame or s l ice. The values are:

o 0x00: Intra-frame (I-frame, I-VOP).

o 0x01: Predic t ive Inter-frame (P-frame, P-VOP);

o 0x02: Bidirec t ional Predic t ive Inter-frame (B-frame, B-VOP);

o All other values are reserved.

If the FTI is not supported by an implementat ion, then the first 2 oc tets of Padding MUST not be
equal to 0x46, 0x49. Zero-based padding is recommended.

• The rep lay header ex tension MUST be present in the firs t packet of every access unit

(e.g. video frame). It MAY NOT be present in subsequent packets of an access unit .

11.4.4.1 Compatibility with the JPEG header extension

The replay he ader ex tens ion may co-ex is t with the heade r extension used by the JPEG RTP profile;
this is necessary to allow replay of JPEG stre ams that use this ex tension. The JPEG ex tens ion is

s imply concatentated with the replay ex tens ion; its presence is indicated by an extens ion length field
with a va lue greater th an 3, and by the ex tens ion s tart codes o f 0xFFD8 or 0xF FFF at the s tart of the
fourth word of the extens ion content.

The following illus trates a JPEG packet that uses both ex tens ions :

V=2 P X=1 CC M PT sequence number
Timestamp

synchronization source (SSRC) identifier
0xABAC length=N+3

NTP timestamp…
...NTP timestamp

C E D mbz Padding
0xFFD8 length=N

extension payload: sequence of additional JPEG marker segments padded with 0xFF to the total

extension length
Payload…

Copyright PSIA 2010

11.4.4.2 NTP Timestamps

The NTP timestamps in the RTP extension header MUST increase monotonically over successive packets

within a single RTP stream. They SHOULD correspond to wallclock time as measured at the RaCM device,
adjusted if necessary to preserve monotonicity.

11.4.5 Initiating Playback

Playback is init iated by means of the RTSP PLAY method. For example:

PLAY rtsp://192.168.0.1/path/to/recording RTSP/1.0

CSeq: 123

Session: 12345678

Range: clock=20090615T114900.440Z-

Rate-Control: no

Reverse playb ack is in dicated us ing the Scale h eader field with a negat ive value. For example to play

in reverse without no data loss a value of –1.0 would be used.

PLAY rtsp://192.168.0.1/path/to/recording RTSP/1.0

CSeq: 123

Session: 12345678

Range: clock=20090615T114900.440Z-

Rate-Control: no

Scale: -1.0

11.4.5.1 Range header field

The Range field MUST be expressed us ing absolute times only; the other formats defined by [RFC

2326] SHALL NOT be used.

Either op en or c losed ranges may be used. In the case of a c losed range, the range is increas ing (end

t ime later than s tart time) for forward playback and decreas ing for reverse playback.
The direc tion of the range MUST correspond to the value of the Scale header.

In al l cases, the firs t point of the range indicates the s tarting point for replay.

Examples :

PLAY rtsp://192.168.0.1/path/to/recording RTSP/1.0

CSeq: 123

Session: 12345678

Range: clock=20090615T114900.440Z-20090615T115000

Rate-Control: no

PLAY rtsp://192.168.0.1/path/to/recording RTSP/1.0

CSeq: 123

Session: 12345678

Range: clock=20090615T115000.440Z-20090615T114900

Rate-Control: no

Scale: -1.0

11.4.5.2 Rate-Control header field

The Rate-Control field is an ONVIF ex tens ion and may be either “yes” or “no”. If this field is not

present , “yes ” is assumed, and the s t ream is delivered in real t ime us ing s tandard RTP t iming
mechanisms . If this field is “no”, the s tream is delivered as fas t as poss ible, using only the flow

Copyright PSIA 2010

control provided by the transport to l imit the delivery rate.

Copyright PSIA 2010

11.4.5.3 Frames header field

The Frames header field may be used to request that only key frames be played, and opt ionally a

minimum interval between success ive key frames in the s tream. The latter can be used to limit the
number o f frames received even in the presence of “ I- frame s torms ” caused by many receivers
requesting frequent I-frames.

The format of this header is

Frames: frametype[/interval]

where frametype may be “key” or “all”, and interval is a time interval expressed in milliseconds. The
interval argument SHALL NOT be present i f the frametype is “al l”.

Example:

Frames: key/4000

The RACM DEVICE MUST support the Frames header field. This does not preclude the use of the

Scale header field as an alternative means of limiting the data rate. The implementation of the Scale
header field may vary between different RACM DEVICE implementations, as stated by [RFC

2326].

11.4.5.4 Clean points

The transmitted video s tream MUST begin at a c lean point . The rules for choos ing the s tarting frame
are as follows:

• I f the requested s tart t ime is within a sect ion of recorded footage, the s tream s tarts with the first

c lean point at or before the requested s tart time. This is the case regardless of
playback direc tion.

• I f the requested s tart t ime is within a gap in recorded footage and playb ack is being i nit iated in

the forwards direc tion, the s tre am s tarts with the firs t c lean po int in the sect ion fol lowing the
requested s tart t ime.

• I f the requested s tart t ime is within a gap in recorded footage and playb ack is bei ng i nit iated in
the re verse direc tion, the s tream s tarts with the las t clean point in the sec t ion preceding the

requested s tart t ime.

11.4.5.5 Time-gapped Playback

When playback occurs for tracks, or media segments, that contain time gaps within them (i.e. for tracks that

employ „Event Driven‟ recording), the following rules apply:

• RaCM devices shall play back the audio/video/metadata with the NTP timestamps reflecting the
relative time (i.e. time between media packets in the RTP clock field), and indicating the absolute time

in the RTP extension header (see above). As a note, clients can obtain the RaCM device‟s local time
via the „System/time/localTime‟ and „/System/time/timeZone‟ resources. The RaCM device shall
playback the stream(s) as a contiguous, back-to-back media stream.

• Consumers of a media playback stream that notices a time jump/gap based on the RTP clock, and
NTP timestamp fields, may RTSP „PAUSE‟ the stream if they desire to manage the time gap
sequences. For each PAUSE the consumer MUST either issue a PLAY, to resume media streaming,

Copyright PSIA 2010

or issue a TEARDOWN to destroy the media streaming session.

• As noted above, all time gaps MUST start with a clean point, i.e. a key/intra frame.

Copyright PSIA 2010

11.4.6 Reverse replay

Reverse replay is initiated using the Range header field as described above.

11.4.6.1 Packet transmission order

The order in which video packets are transmitted during reverse replay is based on GOPs, where a

GOP cons is ts of a clean point followed by a sequence of non-c leanpoint packets .

During re verse playback, GOPs are sent in reverse order, but packets within a GOP are sent in

forward order. The firs t packet of each GOP MUST have the “discont inuity ” bit set
in i ts RTP extens ion header. The l as t packet of a GOP im mediately fol lowing a gap
(or the beginning of available footage) MUST have the E bit set in its RTP extens ion header.

When t ransmitting only key frames, or when the codec is not motion-based (e.g. JPEG), a GOP is
cons idered to cons is t of a single frame, but may st ill be composed of multiple p ackets . In th is case the

packets within each frame are again sent in fo rward order, wh ile the frames themse lves are sent in
reverse order.

Audio and metadata streams MAY be transmitted in an order mirroring that of the video stream, or
alternatively in simple reverse order. However where a metadata document is split over multiple
packets, those packets MUST be transmitted in forward order.

11.4.6.2 RTP sequence numbers

The RTP sequence numbers of packets transmitted during reverse playback SHALL increment
monotonically in the order of delivery, not in the intended order of playback.

11.4.6.3 RTP timestamps

The RTP t imestamps of packets t ransmit ted during reverse playback SHALL be the same as they

would be if th ose same packets were being transmitted in the forwards direc t ion, follow ing the rules
laid out in [RFC 3550] and support ing documents. Unlike the sequence numbers , the
RTP timestamps correspond to th e intended playback order, not the de livery order. The RACM

DEVICE MAY use the same RTP t imestamps that were originally received when the s tream was
recorded.

11.4.7 Currently recording footage

If the c lient commences playback from the current real world time or shortly before it , i t can end up

play ing footage in real t ime as it is being record ed. In this e vent the server s imply cont inues to send
s tream data to the c lient as it receives it .

Note that the E bit is not set on access units currently being recorded even though each access unit

Copyright PSIA 2010

sent to the replay client will typically be the last one known to the RACM DEVICE. If recording

stops however, the E bit is set on the last access unit of the recording.

11.4.8 End of footage

If playback reaches a point after which there is no further data in one or more of the streams being

sent, it stops transmitting data but does not enter the “paused” state. If the RACM DEVICE resumes
recording after this has happened, delivery will resume with the new data as it is received.

Copyright PSIA 2010

11.4.9 Go To Time

As s tated in [RFC 232 6] sect ion 10.5, a PLAY command received when replay is a lready in progress
wil l not take effec t unt i l the ex ist ing play operation has completed. This specification adds a new
RTSP header, “Immediate”, which overrides this behaviour:

PLAY rtsp://192.168.0.1/path/to/recording RTSP/1.0

CSeq: 123

Session: 12345678

Range: clock=20090615T114900.440Z-

Rate-Control: no

Immediate: yes

If the RACM DEVICE receives a PLAY command with the Immediate header set to “yes”, i t will

immediately s tart play ing from the new locat ion, cancell ing any ex is ting PLAY command. The firs t
packet sent from the new location SHALL ha ve the D (discontinuity) bit set in i ts RTP extens ion
header.

Copyright PSIA 2010

12 Polymorphic/Poly-temporal Track Support

(new v1.1)

This section of the document specifies the PSIA RaCM design for a standards compliant
design that accommodates and supports both polymorphic „tracks‟ and poly-temporal (multi-time

segmented) „tracks‟.
A „track‟, as described in the prior section of this specification (in RaCM nomenclature), is a

virtual container. It does not bear any direct association with how content (video, audio, metadata,
text, etc.) is stored, managed, searched, played, and configured. Basically, this renders a track as
essentially a „handle‟ to a set of parameters and attributes that define the characteristics and content

of a media repository. The RaCM specification does not infer, nor prescribe, any aspects of the
implementation of content management except for the external interface definitions which are
accessible via the network.

Presently, the RaCM specification prescribes a 1-to-1 match between a specific form of media
content, i.e. MPEG-4 video, G.726 audio, text, etc., and a track. This 1-to-1 correlation of a track ID

and attribute set to a specific form of content is spawned from the RTSP/SDP requirements to
describe all „tracks‟ (now using the SDP RFC 2327/4556 nomenclature) with unique attribute sets
such that media decoders (primarily video and audio) can be setup to receive their particular

datastreams on specific RTP connections. Additionally, each RTP connection, in itself, has its own
indigenous set of parameters associated with each datastream (e.g. time, payload ID, socket

connection, SSRC ID, etc.). It is noteworthy to cite that certain codec related attributes can change
within a stream/track without „breaking‟ that codec instance. For video codecs, as long as the codec
profile and resolution do not change, the frame rate, bit rate, and quality levels (i.,e. quantization)

can vary within a given stream/track. Some items that cannot change within a specific stream/codec
instance are: entropy encoding method, codec profile, pixel/sample width, resolution, color format

(e.g. from YUV 4:2:0 to YUV 4:2;2).

The above track/stream mapping to one specific set of track parameters across the recording

and streaming functions does not handle 2 functional cases, well. These cases are:
• Polymorphic content tracks/streams: Tracks, or streams, that bear content that has more

than one set of codec-related content attributes.

• Poly-temporal temporal media sessions: This term addresses RTSP sessions that need to
stream several tracks, or datastreams, that do not share the same „start‟ times. They may be

chained, or cascaded, from a time perspective, potentially with overlap, but the streams do
not start, and in many cases, stop, at the same time. Since RTSP‟s design assumes a
common start time for all the advertised („DESCRIBE‟d) streams, it does not encompass

the poly-temporal concept.
These 2 scenarios require additional definition in the RaCM specification such that a standards
compliant, or nearly standards compliant, method for configuring, advertising and playing

polymorphic and poly-temporal media can be accomplished. For the rest of this specification, unless
the terms polymorphic or poly-temporal are specifically cited, the term „poly-attribute‟ covers both
cases.

Copyright PSIA 2010

12.1 Poly-attribute Tracks and Stream Management

This section of the document covers the following areas that are related to poly-attributed content

management and poly-attributed stream management.

• Track attributes and parameter definitions;

• Accessing descriptions of poly-attribute characteristics via searching and session
management mechanisms and data definitions;

• Correlating poly-attributed datastreams to network/RTP stream parameters, per session,
Each of the above areas is covered in the order described above.

12.1.1 Poly-attribute Tracks and Streams

For recording devices, tracks not only have inherent attributes associated with the recorded
content, but also with respect to the live input that feeds, or fed, that content base. Therefore, the
data characteristics associated with a track, “contentType”, “codecType”, “Description”, etc., also

advertise the attributes of any active live stream (i.e. “channel”) that is feeding that track. Given this
relationship, there are 3 ways for a potential data consumer to get the attribute information necessary

to setup a data session:

• Read the track attributes for a set of one, or more, tracks

• Perform a search and utilize the „SearchResponse‟ information to get the specific
attributes for a data session;

• Directly issue an RTSP DESCRIBE for a specific source (via its UUID/GUID) or
track.

Usually the last two methods are performed, as needed, after track attribute information has been
read (though not always). All data sessions require codec and format attributes as part of the setup
parameters. This is due to the fact that audio/video decoders must know certain codec attributes prior

to decoding an incoming stream. The most detailed information comes in the SDP response to an
RTSP DESCRIBE request. However, general attributes related to content and codec types are

needed prior to RTSP session initiation in order that basic attributes can be verified or validated prior
to committing the creation of an RTSP session. Track parameters assist in this process.

Copyright PSIA 2010

12.1.2 Track attributes

Each track, as described in Section 9, has its own schema definition for defining the parameters

associated with its content base, and the input channel from which the content originated. One of the
key elements in each track‟s parameter base is the “Description” element. This field is a string

comprised of up to 7 AVP (“Attribute-Value Pair”) tokens. An AVP token has the following format:
<attribute>”=”<value>

where “<attribute>” and “<value>” represent UTF-8 strings. The definition of each field token

follows:

Field
Position

Field Name Field Description

1 Track type
(“trackType”)

Required: Indicates type of track. Valid tags are:
¾ “standard” = norma.l, single content base track
¾ “polymorphic” = multi-content type track

¾ “polytemporal” = multi-time segmented track

2 Source Tag
(“sourceTag”)

Optional: Tag to indicate device type, if known. Usually a
mfgr/make/model tag.

3 Content Type
(“contentType”)

Required: Indicates base (for polymorphic track the initial
content type) content type for the track. Values are:

¾ “video”

¾ “audio”
¾ “metadata”
¾ “text”

¾ “other” (private definition)

4 Codec Type
(“codecType”)

Required for all non-text content types. See Appendix A for
details

5 Resolution
(“resolution”)

Required for audio/video. Field indicating resolution of the
data elements in a datastream. For video, this is the horizontal
by vertical resolution in an „Horizontal xVertical‟ format

where ASCII „x‟ separates the horizontal and vertical integer
numbers. The assumed video format is progressive (i.e. frame
based). For video streams that are interlaced (i.e. field based)

and ASCII lower-case „i‟ needs to be
For audio, it is the bit-width of the samples.

If a text protocol is enabled for double-byte characters, this
field should be used to indicate “2B” character sets.

6 Frame rate
(“frameRate”)

Required for video. Frame rate of encoder output.

7 Bit rate
(“bitRate”)

Optional, but recommended. Bit rate of audio/video data
stream.

Any field tokens not populated in the “Description” string are left absent. However, a RaCM device
SHOULD provide as much useful information as possible for describing a poly-attributed track. The

Copyright PSIA 2010

following example “Description” element indicates a standard MPEG-4, VGA video track, from an

AXIS IP camera. The video stream is rated at 3.2Mbps and 25 frames/second.

<Description>trackType=standard,sourceTag=AXIS210a,contentType=video,codecType=MPEG4-SP,

resolution=640x480,frameRate=25fps,bitRate=3200kbps</Description>

The following example has no source tag for an H.264 VGA IP camera.

<Description>trackType=standard,contentType=video,codecType=H.264-BP

,resokution=640x480,frameRate=30fps,bitRate=3600kbps</Description>

The next example is for a polymorphic video track. The initial video is from an H.264 video encode

source doing NTSC-based 2CIF (720x240) @ 15 fps during normal recording, but moving to 4CIF
@ 30 fps during event/alarm recording.

<Description>trackType=polymorphic,sourceTag=ABCodec,contentType=video,codecType=H.264-

BP/G.711a,resolution=640x240/640x480,frameRate-15/30fps</Description>

Please note that in the above example, there is no specific bit rate cited, so it is therefore absent.
Additionally, multiple attribute fields, such as „codecType‟, the varying resolutions, and frame rates
are listed as sets of choices where a „slash‟ is utilized to separate the choices. So, all multiple

attribute fields are to use the ASCII/UTF-8 „slash‟ character (“/”) to separate the attributes in a list.

The following example is for a poly-temporal video track. The parameters of the “Description”
string indicate that the video segments change frame rate with respect to the time segments (though
the codec type never changes).

<Description>trackType=polytemporal,sourceTag=ABCodec,contentType=video,codecType=H.264-

BP,resolution=640x480,frameRate=15/30fps,bitRate=360/700kbps</Description>

The above track description indicates that the codec type does not change, but the frame rate does
vary per each temporally related video segment within the track. The bit rate listed is an optional

reference which helps indicated the approximate codec output rate at the corresponding frame rates.
Since poly-temporal tracks can vary in structure, the guidelines for the track description field
variables are only that the initial „contentType‟ and „codecType‟ characteristics are listed. However,

as much useful information should be provided to help describe the contents and behavior of a track.
No further requirements are levied on track description fields due to the fact that the SDP response

to an RTSP DESCRIBE, or the „SearchResponse‟ parameters, indicate the necessary internal details
regarding the content, and temporal, structure of archived and live datastreams. Additionally, tracks
and streams that are polymorphic and poly-temporal should list a compound track type of

“polymorphic/polytemporal” such that interrogators can understand the nature of a track. An
example follows.

<Description>trackType=polytemporal/polytemporal,sourceTag=IPCam9000,contentType=video,

codecType=H.264-BP/G.711,resolution=320x240/640x480,frameRate=15/30fps/Description>

This track description example is the type would typically be coupled to a track that records in

Event-Driven mode. The description indicates this is a polymorphic track that is comprised of
multiple temporal segments. In this case, this track is comprised of video and audio. The video

Copyright PSIA 2010

varies, per segment, from QVGA to VGA, and from 15fps to 30fps. In this example, no overall bit

rates are supplied as information in this description.

12.2 Poly-attribute Stream Description

This section of the document deals with the rendering the attributes of datastreams (both live
and archived) for streaming via RTSP and SDP. The constructs discussed in this section are taken

from RFC 2326 (RTSP), RFCs 2327/4566 (SDP) and RFC 3388 (Grouping Media Lines in SDP).
The internals of these specifications are not covered here in detail and it is expected that the reader
will familiarize themselves with these specifications. Some basic concepts are covered here for

description‟s sake.
RTSP is the control session protocol for managing streaming sessions. This protocol uses

SDP as the format and syntactical standard for advertising stream attributes for media-based
sessions. Whenever a potential consumer issues an RTSP DESCRIBE message/request, the server
entity responds with all of the necessary attributes related to all of the media forms it may provide

for streaming in SDP format. As time has passed, additional definitions have been added to SDP
grammar for managing more complex media session types. Some of these additions are outlined in

RFCs 3388 and 5583. These primarily relate to identifying multiple media types possible within a
single session. This capability parallels the need to identify the multiple media types for poly-
attribute datastreams. This section describes the process for enabling both polymorphic and poly-

temporal datastreams. The four areas covered are:

¾ Session type identification;

¾ Media type descriptions and identification;
¾ Media level time management;
¾ Session and connection management for poly-attribute sessions.

12.2.1 SDP Session Section

Each SDP descriptor instance has two primary sections: 1) the session section (which comes first),
and 2) the media sections. All PSIA stream sessions that have poly-attribute capabilities MUST

include the session information attribute (“i=… “) line in the SDP session section. The construction
of this session information string only requires that the first word indicate the session type. The 4
possible tags that are to be used for the first field are:

¾ “polymorphic”, or…
¾ “polytemporal”, or…

¾ “polymorphic/polytemporal”, or…
¾ “standard”;

Some example session information strings are:

…

“i=polymorphic media session description”

...

“i=polytemporal media session”

Copyright PSIA 2010

The first example string indicates to a client or consumer that the session parameters that will follow
in an SDP instance describes the polymorphic media session attributes. The second string indicates
that an SDP instance contains attributes for a poly-temporal session. For standard sessions, no

session information line is required, yet if one is present it MUST start with the “i=standard…” tag.

12.2.2 SDP Media Section

Each media section within a poly-attributed SDP session descriptor MUST identify its codec specific

attributes that require a specific codec instance. Each such media instance MUST identify the
following identity information:

¾ Track ID (“trackID”): This line correlates a media instance with the track it is associated

with. This is the PSIA RaCM track ID outlined for each track as described in Section 9. For
poly-attributed tracks, this is the over-arching track that the media instance (datastream) is

associated with. Please note that the term “track ID” has 2 meanings: A) it is the term used by SDP
definitions (RFCs 2327/4566) to identify a handle to particular multimedia stream, and B) RaCM
further correlates the prior SDP term to the specific „track‟ (i.e. the identifier to a specific container

of recorded media) on a RaCM device. Therefore, a(n) SDP „track ID” = a RaCM „track ID‟ within
a(n) SDP instance such that the 2 terms are unified in meaning.

¾ Media ID (“mid”): As specified in RFC 3388, the media ID is uniquely associated with each
media instance parameter set. This field, in PSIA usage, is an ASCII unsigned integer unique to the
server for the described media stream/instance. Please note that, per RFC 3388, media IDs are

members of a set of one, or more IDs, that comprise a „Flow ID‟ (“FID”). The term
„Flow ID‟ is used to define the set of media IDs that comprise a “group” (e.g. “a=group:FID 6 7 8

9” is a Flow ID group comprised of 4 media IDs, six , seven, eight and nine, respectively).
The above IDs are used in a hierarchical manner. The track ID identifies the root poly-attributed
track correlated to each media instance. The media id, however, uniquely identifies the specific

media instance, and its characteristics, as a parameter set. This enables correlation to the original
RaCM track instance while enabling the ability to setup each media instance as its own stream

(i.e.RTP port number and payload ID). In summary, for recorded content, the SDP “track ID” is the
RaCM track ID, and the SDP „media ID‟ identifies a specific set of stream attributes. The following
example depicts 4 unique media instances:

…

a=group:FID 7001 7002 7003 7004

m=video 5002 RTP/AVP 97

a=mid:7001

a=trackID:7

a=control:rtsp://PSIA/Streaming/tracks/7/mid=7001

a=rtpmap:97 H264/90000

a=fmtp:97 packetization-mode=1;profile-level-id=4D400C;sprop-

parameter-sets=J01ADKkYUI/LgDUGAQa2wrXvfAQ=,KN4JF6A=a=

b=AS:110

Copyright PSIA 2010

a=framerate:15

a=framesize:97 320-240

a=cliprect:0,0,240,320

m=video 5004 RTP/AVP 98

a=mid:7002

a=trackID:7

a=control:rtsp://PSIA/Streaming/tracks/7/mid=7002

a=rtpmap:98 H264/90000

a=fmtp:98 packetization-mode=1;profile-level-id=4D400C;sprop-

parameter-sets=J01ADKkYUI/LgDUGAQa2wrXvfAQ=,KN4JF6A=a=

b=AS:1200

a=framerate:30

a=framesize:98 640-480

a=cliprect:0,0,480,640

m=video 5005 RTP/AVP 98

a=mid:7003

a=trackID:7

a=control:rtsp://PSIA/Streaming/tracks/7/mid=7003

a=rtpmap:99 jpeg/90000

a=framerate:5

a=framesize:99 960-720

a=cliprect:0,0,720,960

m=audio 5003 RTP/AVP 8

b=AS:64

a=mid:7004 a=trackID:7

a=control:rtsp://PSIA/Streaming/tracks/7/mid=7004

...

In the above example there are 4 media instances within a „group‟ (“a=group:FID”) all of which are

associated with track #7: three video instances and one audio instance that share the same „track‟.
Each stream is uniquely identified by its own media ID {“a=mid:…”) which is associated with the
specified group. The group lists its flow ID (“FID”) set which indicates which streams are

interrelated media streams. This Flow ID set lists the media IDs that comprise the „group‟. In this
case the flow ID set is comprised of media IDs 7001, 7002, 7003, and 7004. Media instance #7001

represents a QVGA, 110Kbps, 15fps H.264 video datastream mapped to socket port number 5002,
and RTP payload ID 97. Media instance #7002 represents a VGA, 1.2Mbps, 30fps H.264 video
datastream mapped to socket port number 5004 using RTP payload ID 98. Finally, media ID #7003

is a motion JPEG video stream with a frame rate of 5fps and a resolution of 960x720 (no bandwidth
estimation is provided; i.e. “b=AS:…”). This MJPEG media stream is mapped to socket port number

5005 and has an RTP payload ID of 99. Additionally, a G.711 A-law (RTP payload ID = „8‟)
audio stream, associated with track ID #7 is mapped to socket port number 5003 using RTP payload
ID 8. All of these payload IDs are in the dynamic RTP payload ID allocation range. Also note that

the RaCM device uses all of the well known SDP mechanisms for advertising frame size/resolution
(i.e. “framesize” and the older “cliprect”) since both mechanisms have been used in the industry.

Copyright PSIA 2010

In the next example, the above data streams are archived and have a polymorphic nature with

respect to time (i.e. each of the media attributes correlates to a specific time segment).

…

a=group:FID 7001 7002

m=video 5002 RTP/AVP 97

a=mid:7001

a=trackID:7

a=control:rtsp://Streaming/tracks/7/mid=700

1 a=rtpmap:97 H264/90000

a=fmtp:97 packetization-mode=1;profile-level-id=4D400C;sprop-

parameter-sets=J01ADKkYUI/LgDUGAQa2wrXvfAQ=,KN4JF6A=a=

b=AS:100

a=framerate:15

a=framesize:97 320-240

a=cliprect:0,0,240,32

0

a=range:clock=20090722T103002.54Z-20090722104431.68Z

m=video 5004 RTP/AVP 98

a=mid:7002

a=trackID:7

a=control:rtsp://PSIA/Streaming/tracks/7/mid=700

2 a=rtpmap:98 H264/90000

a=fmtp:97 packetization-mode=1;profile-level-id=4D400C;sprop-

parameter-sets=J01ADKkYUI/LgDUGAQa2wrXvfAQ=,KN4JF6A=a=

b=AS:1200

a=framerate:30

a=framesize:98 640-480 a=cliprect:0,0.480.640

a=range:clock=20090722T104431.71Z-20090722111723.09

Z m=audio 5003 RTP/AVP 96

b=AS:32

a=control:trackID=8;uri=rtsp://PSIA/Streaming/tracks/

8 a=rtpmap:96 G726-32/8000

a=range:clock=20090722T103002.54Z-20090722111723.09Z

...

In the above example, we have a polymorphic and poly-temporal set of media streams. The

„range‟ attribute (“a=range…), used within a media section, denotes the time span for that media
instance; typically the range attribute is used at the session layer, but poly-temporal media The

PSIA uses UTC time for its „range‟ attribute which is noted by the “clock=” tag. The time
notation is in ISO 8602 format similar, but not identical, to XML „dateTime‟ (see RFC 2326 for
more details).

The first video instance, which is QVGA H.264 video @ 15fps, ranges from July 22, 2009
10:30.02.54AM to 10:44.31.68AM. This is followed, chronologically, by a VGA H.264 video

segment, @ 30fps, that ranges from July 22, 10:44.31.71AM to 11:17.23.09AM the same day.
Please note that the accompanying audio track (track ID #8) spans both of the video media

segments. This audio track is not part of the Flow/media ID group because it is a member of a

separate track (#8). The implementation of poly-attributed tracks is up to the manufacturer.
However, media content that is a member of a different, or separate RaCM track, should not be

included in flow group unless it was explicitly configured, or allocated, in a track with other
media content.

Copyright PSIA 2010

The next example is a pure poly-temporal example. It could possibly represent an event

driven recording session. The video instances have the same characteristics, but they are „gapped‟
with respect to time.

…

a=group:FID 701 702

m=video 5002 RTP/AVP 97

a=mid:701

a=trackID:7

a=control:rtsp://PSIA/Streaming/tracks/7/mid=701

a=rtpmap:97 H264/90000

a=fmtp:97 packetization-mode=1;profile-level-id=4D400C;sprop-

parameter-sets=J01ADKkYUI/LgDUGAQa2wrXvfAQ=,KN4JF6A=a=

b=AS:640

a=framerate:15

a=framesize:97 640-480

a=cliprect:0,0,480,640

a=range:clock=20090824T113002.54Z-20090824114431.68Z

m=video 5002 RTP/AVP 97

a=mid:702

a=trackID:7

a=control:rtsp://PSIA/Streaming/tracks/7/mid=702

a=rtpmap:98 H264/90000

a=fmtp:98 packetization-mode=1;profile-level-id=4D400C;sprop-

parameter-sets=J01ADKkYUI/LgDUGAQa2wrXvfAQ=,KN4JF6A=a=

b=AS:640

a=framerate:15

a=framesize:98 640-480 a=cliprect:0,0,480,640

a=range:clock=20090824T125131.71Z-20090924131723.09Z

m=audio 5003 RTP/AVP 0

b=AS:64

a=trackID:8 a=control:rtsp://PSIA/Streaming/tracks/8

a=range:clock=20090924T103002.54Z-20090824131723.09Z

...

In the above example, the server has a VGA H.264 video track,. @ 15fps, that has 2 media
instances/segments. Both occur on August 24th, 2009. The first media segment is from 11:30.02AM
to 11:44.31.68AM. The next video segment is from 12:51.31.71PM to 1:17.23.09PM. Please note

that due to the fact that both of the video media segments share the same codec attributes, they also
share the same network socket connection (port #5002) and RTP payload ID (97). The media

segments (i.e. separate media IDs) are only used to notify the consumer that there are time gaps in
the video media. Also in the above example, the accompanying audio track (since it falls within the

Copyright PSIA 2010

corresponding time frame) is a G.711 Mu-law (PCMU; RTP Payload ID of zero) that does NOT

have a media ID, in this case, since it has its own separate track ID.

Please note that in the above SDP segments, each media instance should MUST have an attribute

line indicating the format parameters (“a=fmtp:…”) for that specific codec instance. For MPEG-4
codecs this includes the VOS/VOL codec parameters; for H.264 this includes sequence properties

(“sprop…”) parameter sets..

Also of note, though it is allowable according to RFC 3388 to include audio in a flow group, this

practice is not supported by the PSIA. Audio is always considered to be either related track to some
set of video tracks and requires lip-synch, or independently play-able as a standalone stream.

12.2.3 Stream Session Management

The final major aspect of poly-attributed tracks, and channels, is in the stream setup, teardown and
management mechanics. As defined above, each media instance/stream is mapped to a set of media

attributes that are correlated to an RTP session (i.e. socket) and payload ID. This gives the consumer
the ability to know what the codec parameters, time associations (if any) and mappings to network
connections are: Fundamentally, consumers of poly-attributed streams MUST issue RTSP SETUP

messages for each media instance (“mid”) that they plan to receive, and, they MUST use the media
segment‟s specified URI which is defined by the “a=control:…” attribute (e.g.

“a=control:rtsp://PSIA/Streaming/tracks/7/mid=4”). All of the setup is done irrespective of when a
particular stream may occur with respect to time (i.e. poly-temporal tracks or channels).

The following example RTPS SETUP messages indicate the construction of the SETUP URI

when activating each media instance an entity plans on receiving. Note that in the example which for
archived video, i..e. „tracks‟, this field could be replaced for „channels‟ when consuming live poly-

attributed data.

RTSP SETUP rtsp://Streaming/tracks/7/mid=7001…

…

RTSP SETUP rtsp://Streaming/tracks/7/mid=7002…

…

RTSP SETUP rtsp://Streaming/tracks/7/mid=7003…

…

In the above example, a consumer desires to receive 3 media streams within a flow group. Each
identified with its own media ID (“mid”). The above examples correlate to the exemplary SDP
segments used in the prior section of this document. All of the media streams are correlated to track

#7 though each is specifically controlled since the consumer can reassign socket numbers per stream
if needed. The stream once set, can flow in any order since they may, or may not be, „wall clock‟
independent of each other. The consumer must be ready to receive any stream at any time designated

by its SDP description, if any is present. Consumers must correlate the payload IDs to the codec-
specific instances.

Copyright PSIA 2010

13 /PSIA/Security

RaCM devices are required to provide session-level security for the management operations,
such as configuration, status, etc., on a RaCM unit. The requirements fall into 2 basic categories:

• HTTP security/authentication: Per the PSIA Service Model Specification, Section 4.3,
PSIA devices shall support HTTP and HTTPS session modes for all REST sessions.

Additionally, PSIA devices, systems and applications are required to support both HTTP
basic and digest-based authentication (RFC 2617).

• User-based security: RaCM devices are required to support the setup of user logins on

the device itself per the IP Media Device API Specification, Sections 4.2.4, 7.10, and
7.11. Per the IP Media specification, only the “/Security/AAA/users” and the

“/Security/AAA/users/<id>” resources are required to be supported. Support for
administrative access, “/Security/adminAccesses” and “/Security/adminAccesses/<id>”

are highly recommended.
RaCM devices implementing the above meet the minimum PSIA requirements and are functionally
equivalent, from a session level security perspective, PSIA IP Media devices.

Copyright PSIA 2010

14 /PSIA/Custom/SelfExt/ContentMgmt/DynVi

deo

URI

/PSIA/Custom/SelfExt/ContentMgmt/DynVideo Type Service

Methods Query String(s) Inbound Data Return Result

Notes Dynamical Video service.

RaCM v1.1目前不支持对添加的source进行管理。为了支持对source管理并且兼容PSIA IPMD协

议，本文档通过扩展DynVideo和DynStreaming服务接口。动态视频通道（ IP Camera）与IPMD协议中

的视频输入通道具有很大相似性，从应用层面来看，完全可以等同视频输入通道。

动态视频通道产生动态流。当动态视频输入通道被删除时，与该动态视频输入通道相关联的所有动

态流通均被删除。

14.1 /PSIA/Custom/SelfExt/ContentMgmt/DynVideo/inputs

URI

/PSIA/Custom/SelfExt/ContentMgmt/DynVideo/inputs Type Resource

Function Access the dynamical video inputs.

Methods Query String(s) Inbound Data Return Result

GET <DynVideoInput>

Notes 可以把IP Camera添加到NVR或混合DVR，作为NVR或混合DVR的一个动态视频输入通道管

理。NVR或混合DVR根据动态视频通道的参数设置 IP Camera的对应参数。

DynVideoInput XML Block

<DynVideoInput version=“1.0” xmlns=”urn:selfextension:psiaext-ver10-xsd”>

<DynVideoInputChannelList/> <!-- opt -->

</DynVideoInput>

14.2 /PSIA/Custom/SelfExt/ContentMgmt/DynVideo/inputs/se

arch

URI

/PSIA/Custom/SelfExt/ContentMgmt/DynVideo/inputs/sea

rch
Type

Resource

Function 搜索动态通道

Methods Query String(s) Inbound Data Return Result

GET <DynVideoInputChannel>

Copyright PSIA 2010

Notes
<adminProtocol> IP Camera的管理协议

<adminPort>管理端口

DynVideoSourceList XML Block

<DynVideoSourceList version=“1.0” xmlns=”urn:selfextension:psiaext-ver10-xsd”>

<dynVideoSourceDescriptor> <!-- opt -->

 <id> <!-- req, xs:string;id --> </id>

 <adminProtocol> <!--req, xs:string “HIKVISION, SONY, PSIA, ONVIF …”> </adminProtocol>

 <addressingFormatType>

<!-- req, xs:string, “ipaddress,hostname”-->

</addressingFormatType>

<hostName> <!-- dep, xs:string --> </hostName>

<ipAddress> <!-- dep, xs:string --> </ipAddress>

<subnetMask> <!-- opt, xs:string, subnet mask for IPv4 address --> </subnetMask>

<ipv6Address> <!-- dep, xs:string --> </ipv6Address>

<bitMask> <!-- opt, xs:integer, bitmask IPv6 address --> </bitMask>

 <serialNumber> <!--opt, xs:string --> </serialNumber>

<macAddress> <!--opt, xs:string; --> </macAddress>

<firmwareVersion> <!-- opt, req, xs:string --> </firmwareVersion>

<adminPortNo> <!-- opt, xs:integer --> </adminPortNo>

<userName> <!-- opt, xs:string --> </userName>

<password> <!-- opt, xs:string --> </password>

<srcInputPortNums> <!-- req, xs:string; id --> </srcInputPortNums>

</dynVideoSourceDescriptor>

<DynVideoSourceList>

14.3 /PSIA/Custom/SelfExt/ContentMgmt/DynVideo/inputs/ch

annels

URI

/PSIA/Custom/SelfExt/ContentMgmt/DynVideo/inputs/ch

annels
Type Resource

Function Access dynamical video input channels.

Methods Query String(s) Inbound Data Return Result

GET None <DynVideoInputChannelList>

PUT <DynVideoInputChannelList> <ResponseStatus>

POST <DynVideoInputChannel> <ResponseStatus>

Notes Dynamical video inputport can be created or deleted.

DynVideoInputChannelList XML Block

<DynVideoInputChannelList version=“1.0” xmlns=”urn:selfextension:psiaext-ver10-xsd”>

<DynVideoInputChannel/> <!-- opt -->

</DynVideoInputChannelList>

Copyright PSIA 2010

14.4 /PSIA/Custom/SelfExt/ContentMgmt/DynVideo/inputs/ch

annels/status

URI

/PSIA/Custom/SelfExt/ContentMgmt/DynVideo/inputs/ch

annels/status Type Resource

Function Access dynamical video input channels status.

Methods Query String(s) Inbound Data Return Result

GET
None <DynVideoInputChannelStatusList>

Notes

DynVideoInputChannelStatusList XML Block

<DynVideoInputChannelStatusList version=“1.0” xmlns=”urn:selfextension:psiaext-ver10-xsd”>

<DynVideoInputChannelStauts/> <!-- opt -->

</DynVideoInputChannelStatusList>

14.5 /PSIA/Custom/SelfExt/ContentMgmt/DynVideo/inputs/ch

annels/<ID>

URI

/PSIA/Custom/SelfExt/ContentMgmt/DynVideo/inputs/cha

nnels/ID
Type

Resource

Function Access dynamical video input channel properties.

Methods Query String(s) Inbound Data Return Result

GET <DynVideoInputChannel>

PUT <DynVideoInputChannel> <ResponseStatus>

DELETE <ResponseStatus>

Notes

<sourceInputPortDescriptor>设备使用该标签的内容添加动态通道。

<adminProtocol> IP Camera的管理协议

<adminPort>管理端口

<srcInputPort> 待添加的设备可能有多个 videoInputPort ，该标签用于指定添加哪个

videoInputPort。

删除动态通后，与该动态相关联的动态流将被删除。

<srcLogin> 待添加通道的用户名和密码例如：“admin:12345”

DynVideoInputChannel XML Block

<DynVideoInputChannel version=“1.0” xmlns=”urn:selfextension:psiaext-ver10-xsd”>

<id> <!-- req, xs:string;id --> </id>

<name> <!-- opt, xs:string> </name>

<sourceInputPortDescriptor> <!-- req -->

 <adminProtocol> <!--req, xs:string “HIKVISION, SONY, PSIA, ONVIF …”> </adminProtocol>

 <addressingFormatType>

<!-- req, xs:string, “ipaddress,hostname”-->

</addressingFormatType>

<hostName> <!-- dep, xs:string --> </hostName>

<ipAddress> <!-- dep, xs:string --> </ipAddress>

<ipv6Address> <!-- dep, xs:string --> </ipv6Address>

Copyright PSIA 2010

<adminPortNo> <!-- req, xs:integer --> </adminPortNo>

<srcInputPort> <!-- req, xs:string; id --> </srcInputPort>

<userName> <!-- req, xs:string --> </userName>

<password> <!-- req, xs:string --> </password>

</sourceInputPortDescriptor>

<powerLineFrequencyMode> <!-- opt, xs:string “50hz, 60hz” --> </powerLineFrequencyMode>

<whiteBalanceMode>

<!-- opt, xs:string,

“manual,auto,indoor/incandescent,fluorescent/white, fluorescent/yellow,outdoor,

black&white” -->

</whiteBalanceMode>

<whiteBalanceLevel><!-- dep, xs:integer, 0..100 --></whiteBalanceLevel>

<exposureMode><!-- opt, xs:string, “manual, auto” --></exposureMode>

<Exposure><!-- opt -->

<exposureTarget><!-- req, xs:integer, microseconds --></exposureTarget>

<exposureAutoMin><!-- req, xs:integer, microseconds --></exposureAutoMin>

<exposureAutoMax><!-- req, xs:integer, microseconds --></exposureAutoMax>

</Exposure>

<GainWindow><!-- opt -->

<RegionCoordinatesList> <!-- opt -->

<RegionCoordinates><!-- opt -->

<positionX><!-- req, xs:integer;coordinate --></positionX>

<positionY><!-- req, xs:integer;coordinate --></positionY>

</RegionCoordinates>

</RegionCoordinatesList>

</GainWindow>

<gainLevel> <!-- dep, xs:integer, 0..100 --> </gainLevel>

<brightnessLevel> <!-- opt, xs:integer, 0..100 --> </brightnessLevel>

<contrastLevel> <!-- opt, xs:integer, 0..100 --> </contrastLevel>

<sharpnessLevel> <!-- opt, xs:integer, 0..100 --> </sharpnessLevel>

<saturationLevel> <!-- opt, xs:integer, 0..100 --> </saturationLevel>

<hueLevel> <!-- opt, xs:integer, 0..100 --> </hueLevel>

<gammaCorrectionEnabled> <!-- opt, xs:boolean --> </gammaCorrectionEnabled>

<gammaCorrectionLevel> <!-- opt, xs:integer, 0..100 --> </gammaCorrectionLevel>

<WDREnabled> <!-- opt, xs:boolean --> </WDREnabled>

<WDRLevel> <!-- opt, xs:integer, 0..100 --> </WDRLevel>

<LensList> <!-- opt -->

<Lens> <!-- opt -->

<lensModuleName> <!-- opt, xs:string --> </lensModuleName>

<irisMode>

<!-- opt, xs:string, “manual,auto,override” -->

</irisMode>

<focusMode>

<!-- opt, xs:string, “manual,auto,autobackfocus,override” -->

</focusMode>

</Lens>

</LensList>

<DayNightFilter> <!-- opt -->

<dayNightFilterType>

<!-- req, xs:string, “day,night,auto” -->

</dayNightFilterType>

<switchScheduleEnabled><!-- opt, xs:boolean --> </switchScheduleEnabled>

<beginTime> <!-- dep, xs:time --> </beginTime>

<endTime> <!-- dep, xs:time --> </endTime>

</DayNightFilter>

<DynVideoInputChannel>

14.6 /PSIA/Custom/SelfExt/ContentMgmt/DynVideo/inputs/ch

annels/<ID>/password

URI

/PSIA/Custom/SelfExt/ContentMgmt/DynVideo/inputs/ch

annels/<ID>/password Type Resource

Copyright PSIA 2010

Function 设置提供该通道源的访问密码

Methods Query String(s) Inbound Data Return Result

PUT
None <DynVideoInputPassword>

Notes
<oldPassword> 动态通道源的旧的访问密码。旧密码验证成功后，才能修改密码。

<newPassword> 要修改的密码

DynVideoInputPassword XML Block

<DynVideoInputPassword version=“1.0” xmlns=urn:selfextension:psiaext-ver10-xsd>

 <oldPassword> <!-- req, xs:string --> </oldPassword>

 <newPassword> <!--req, xs:string --> </newPassword>

</DynVideoInputPassword>

14.7 /PSIA/Custom/SelfExt/ContentMgmt/DynVideo/inputs/ch

annels/<ID>/netParam

URI

/PSIA/Custom/SelfExt/ContentMgmt/DynVideo/inputs/ch

annels/<ID>/netParam Type Resource

Function 设置提供该通道的源的网络相关参数

Methods Query String(s) Inbound Data Return Result

PUT None <DynVideoInputNetParam>

Notes

<ipAddress> 待设定的IPv4地址。是否含有此元素，取决于提供该通道的源是否支持 IPv4。

<ipv6Address> 待设定的IPv6地址。是否含有此元素，取决于提供该通道的源是否支持 IPv6

<adminPortNo>设定提供该通道的源的管理端口

DynVideoInputNetParam XML Block

<DynVideoInputNetParam version=“1.0” xmlns=urn:selfextension:psiaext-ver10-xsd>

<ipAddress> <!-- opt, xs:string --> </ipAddress>

<ipv6Address> <!-- opt, xs:string --> </ipv6Address>

<adminPortNo> <!-- opt, xs:integer --> </adminPortNo>

</DynVideoInputNetParam>

14.8 /PSIA/Custom/SelfExt/ContentMgmt/DynVideo/inputs/ch

annels/<ID>/status

URI

/PSIA/Custom/SelfExt/ContentMgmt/DynVideo/inputs/ch

annels/status Type Resource

Function Access dynamical video input channels status.

Methods Query String(s) Inbound Data Return Result

GET
None <DynVideoInputChannelStatusList>

Copyright PSIA 2010

Notes

<online> 该动态通道是否在线

<dynStreamingChannelIdList> 该动态通道含有的动态流

<relatedDynIO>与该通道相关联的动态IO

DynVideoInputChannelStatus XML Block

<DynVideoInputChannelStatus version=“1.0” xmlns=urn:selfextension:psiaext-ver10-xsd>

 <id> <!-- req, xs:string; id --> </id>

<sourceInputPortDescriptor> <!-- req -->

 <adminProtocol> <!--req, xs:string “HIKVISION, SONY, PSIA, ONVIF …”> </adminProtocol>

 <addressingFormatType>

<!-- req, xs:string, “ipaddress,hostname”-->

</addressingFormatType>

<hostName> <!-- dep, xs:string --> </hostName>

<ipAddress> <!-- dep, xs:string --> </ipAddress>

<ipv6Address> <!-- dep, xs:string --> </ipv6Address>

<adminPortNo> <!-- opt, xs:integer --> </adminPortNo>

<srcInputPort> <!-- req, xs:string; id --> </srcInputPort>

</sourceInputPortDescriptor>

<online> <!-- req, xs:boolean --> </online>

<dynStreamingChannelIdList> <!-- req -->

 <dynStreamingChannelId> <!-- req, xs:string; id --> </dynStreamingChannelId>

</dynStreamingChannelIdList>

<relatedDynIO> <!-- opt -->

 <dynInputPortIdList>

 <dynInputPortId/> <!-- opt -->

 </dynInputPortIdList>

 <dynOutputPortIdList>

 <dynOutputPortId/> <!-- opt -->

 </dynOutputPortIdList>

</relatedDynIO>

</DynVideoInputChannelStatus>

14.9 /PSIA/Custom/SelfExt/ContentMgmt/DynVideo/inputs/ch

annels/<ID>/focus

URI

/PSIA/Custom/SelfExt/ContentMgmt/DynVideo/inputs/cha

nnels/ID/focus Type Resource

Function Manually focus a video input channel.

Methods Query String(s) Inbound Data Return Result

PUT focus <FocusData> <ResponseStatus>

Notes
<focus>: focus vector data. Negative numbers focus near, positive numbers focus far.
Numerical value is a percentage of the maximum focus speed of the lens module.

FocusData XML Block

<FocusData version=“1.0” xmlns=“urn:psialliance-org”>

<focus><!-- req, xs:intger, -100..100 --> </focus>

</FocusData>

Copyright PSIA 2010

14.10 /PSIA/Custom/SelfExt/ContentMgmt/DynVideo/inputs/ch

annels/<ID>/iris

URI

/PSIA/Custom/SelfExt/ContentMgmt/DynVideo/inputs/cha

nnels/ID/iris Type Resource

Function Manually adjust iris for a video input channel.

Methods Query String(s) Inbound Data Return Result

PUT iris <IrisData> <ResponseStatus>

Notes
<iris> negative numbers close iris, positive numbers open iris. Numerical value is a
percentage of the maximum iris speed of the lens module.

IrisData XML Block

<IrisData version=“1.0” xmlns=“urn:psialliance-org”>

<iris> <!-- req, xs:integer, -100..100 --> </iris>

</IrisData>

14.11 /PSIA/Custom/SelfExt/ContentMgmt/DynVideo/inputs/ch

annels/<ID>/lens

URI

/PSIA/Custom/SelfExt/ContentMgmt/DynVideo/inputs/cha

nnels/ID/lens Type Resource

Function Query lens information.

Methods Query String(s) Inbound Data Return Result

GET <LensStatus>

Notes

<absoluteFocus> indicates the current absolute focus position. 0 is focus near, 100 is
focus far.

<absoluteIris> indicates the current absolute iris position. 0 is completely closed, 100 is
completely open.

LensStatus XML Block

<LensStatus version=“1.0” xmlns=“urn:psialliance-org”>

<Absolute>

<absoluteFocus> <!-- req, xs:integer, 0..100 --> </absoluteFocus>

<absoluteIris> <!-- req, xs:integer, 0..100 --> </absoluteIris>

</Absolute>

</LensStatus>

14.12 /PSIA/Custom/SelfExt/ContentMgmt/DynVideo/inputs/ch

annels/<ID>/overlays

URI

/PSIA/Custom/SelfExt/ContentMgmt/DynVideo/inputs/ch

annels/ID/overlays Type Resource

Copyright PSIA 2010

Function Configure and access text and image overlays.

Methods Query String(s) Inbound Data Return Result

GET <VideoOverlay>

PUT <VideoOverlay> <ResponseStatus>

DELETE <ResponseStatus>

Notes

IP media devices can overlay additional information on the encoded video stream. These
overlays can be either text information or a set of images. Overlays are composited
together in ID-order when displayed in the video. Overlay images are managed with

/PSIA/System/Video/overlayImages.

VideoOverlay XML Block

<VideoOverlay version=“1.0” xmlns=“urn:psialliance-org”>

<TextOverlayList/> <!-- opt -->

<ImageOverlayList/> <!-- opt -->

</VideoOverlay>

14.13 /PSIA/Custom/SelfExt/ContentMgmt/DynVideo/inputs/ch

annels/<ID>/overlays/text

URI

/PSIA/Custom/SelfExt/ContentMgmt/DynVideo/inputs/ch
annels/ID/overlays/text Type Resource

Function Access and configure text overlays for a particular video channel.

Methods Query String(s) Inbound Data Return Result

GET <TextOverlayList>

PUT <TextOverlayList> <ResponseStatus>

POST <TextOverlay> <ResponseStatus>

DELETE <ResponseStatus>

Notes
A set of text overlays is managed. They are composited over the video
signal in increasing ID-order.

TextOverlayList XML Block

<TextOverlayList version=“1.0” xmlns=“urn:psialliance-org”>

<TextOverlay/> <!-- opt -->

</TextOverlayList>

14.14 /PSIA/Custom/SelfExt/ContentMgmt/DynVideo/inputs/ch

annels/<ID>/overlays/text/<ID>

URI

/PSIA/Custom/SelfExt/ContentMgmt/DynVideo/inputs/ch

annels/ID/overlays/text/ID Type Resource

Function Access and configure a particular text overlay for a video channel.

Methods Query String(s) Inbound Data Return Result

Copyright PSIA 2010

GET TextOverlay>

PUT <TextOverlay> <ResponseStatus>

DELETE <ResponseStatus>

Notes
A text overlay can contain time information and static text with color and transparency

information.

TextOverlay XML Block

<TextOverlay version=“1.0” xmlns=“urn:psialliance-org”>

<id> <!-- req, xs:string;id --> </id>

<enabled> <!-- req, xs:boolean --> </enabled>

<timeStampEnabled> <!-- opt, xs:boolean --> </timeStampEnabled>

<dateTimeFormat> <!-- dep, xs:string --> </dateTimeFormat>

<backgroundColor> <!-- opt, xs:hexBinary;color --> </backgroundColor>

<fontColor> <!-- opt, xs:hexBinary;color --> </fontColor>

<fontSize> <!-- opt, xs:integer, pixels --> </fontSize>

<displayText> <!-- req, xs:string --> </displayText>

<horizontalAlignType> <!-- opt, xs:string, “left,right,center” --></horizontalAlignType>

<verticalAlignType> <!-- opt, xs:string, “top,bottom” --> </verticalAlignType>

</TextOverlay>

14.15 /PSIA/Custom/SelfExt/ContentMgmt/DynVideo/inputs/ch

annels/<ID>/overlays/image

URI

/PSIA/Custom/SelfExt/ContentMgmt/DynVideo/inputs/ch

annels/ID/overlays/image Type Resource

Function Access and configure image overlays for a particular video channel.

Methods Query String(s) Inbound Data Return Result

GET <ImageOverlayList>

PUT <ImageOverlayList> <ResponseStatus>

POST <ImageOverlay> <ResponseStatus>

DELETE <ResponseStatus>

Notes A set of image overlays is managed. They are composited over the video signal in
increasing ID-order.

ImageOverlayList XML Block

<ImageOverlayList version=“1.0” xmlns=“urn:psialliance-org”>

<ImageOverlay/> <!-- opt -->

</ImageOverlayList>

14.16 /PSIA/Custom/SelfExt/ContentMgmt/DynVideo/inputs/ch

annels/<ID>/overlays/image/<ID>

URI

/PSIA/Custom/SelfExt/ContentMgmt/DynVideo/inputs/ch
annels/ID/overlays/image/ID Type Resource

Copyright PSIA 2010

Function Access and configure a particular image overlay for a video channel.

Methods Query String(s) Inbound Data Return Result

GET <ImageOverlay>

PUT <ImageOverlay> <ResponseStatus>

DELETE <ResponseStatus>

Notes

An image overlay can contain time information and static text
with color and transparency information.

In order to enable image overlay, an image must have been previously uploaded to the

device using the /PSIA/System/Video/overlayImages command.

ImageOverlay XML Block

<ImageOverlay version=“1.0” xmlns=“urn:psialliance-org”>

<id> <!-- req, xs:string;id --> </id>

<enabled> <!-- req, xs:boolean --> </enabled>

<imageName> <!-- req, xs:string --> </imageName>

<positionX> <!-- opt, xs:integer;coordinate --> </positionX>

<positionY> <!-- opt, xs:integer;coordinate --> </positionY>

<transparentColorEnabled> <!-- opt, xs:boolean --> </transparentColorEnabled>

<transparentColor> <!-- dep, xs:hexBinary;color --> </transparentColor>

</ImageOverlay>

14.17 /PSIA/Custom/SelfExt/ContentMgmt/DynVideo/inputs/ch

annels/<ID>/privacyMask

URI

/PSIA/Custom/SelfExt/ContentMgmt/DynVideo/inputs/ch
annels/ID/privacyMask Type Resource

Function Access and configure privacy masking.

Methods Query String(s) Inbound Data Return Result

GET <PrivacyMask>

PUT <PrivacyMask> <ResponseStatus>

Notes Privacy masking can be enabled and the region list configured per channel.

PrivacyMask XML Block

<PrivacyMask version=“1.0” xmlns=“urn:psialliance-org”>

<enabled> <!-- req, xs:boolean --> </enabled>

<PrivacyMaskRegionList/> <!-- opt -->

</PrivacyMask>

14.18 /PSIA/Custom/SelfExt/ContentMgmt/DynVideo/inputs/ch

annels/<ID>/privacyMask/regions

URI

/PSIA/Custom/SelfExt/ContentMgmt/DynVideo/inputs/channel

s/ID/privacyMask/regions Type Resource

Copyright PSIA 2010

Function Access and configure privacy mask regions.

Methods Query String(s) Inbound Data Return Result

GET <PrivacyMaskRegionList>

PUT <PrivacyMaskRegionList> <ResponseStatus>

POST <PrivacyMaskRegion> <ResponseStatus>

DELETE <ResponseStatus>

Notes Privacy masking consists of a set of regions that are combined to grey or black out areas
of a video input.

PrivacyMaskRegionList XML Block

<PrivacyMaskRegionList version=“1.0” xmlns=“urn:psialliance-org”>

<PrivacyMaskRegion/> <!-- opt -->

</PrivacyMaskRegionList>

14.19 /PSIA/Custom/SelfExt/ContentMgmt/DynVideo/inputs/ch

annels/<ID>/privacyMask/regions/<ID>

URI

/PSIA/Custom/SelfExt/ContentMgmt/DynVideo/inputs/channe

ls/ID/privacyMask/regions/ID Type Resource

Function Access and configure a particular privacy mask region.

Methods Query String(s) Inbound Data Return Result

GET <PrivacyMaskRegion>

PUT <PrivacyMaskRegion> <ResponseStatus>

DELETE <ResponseStatus>

Notes

Region coordinates are dependent on video resolution. Regi ons will be “drawn” from the
coordinates provided in a top-down fashion. At least three <RegionCoordinates> blocks
must be provided for a single <PrivacyMaskRegion> block.

Ordering of <PrivacyMaskRegion> blocks is insignificant.

PrivacyMaskRegion XML Block

<PrivacyMaskRegion version=“1.0” xmlns=“urn:psialliance-org”>

<id> <!-- req, xs:string;id --> </id>

<enabled> <!-- req, xs:boolean --> </enabled>

<RegionCoordinatesList> <!-- req -->

<RegionCoordinates> <!-- req, at least one if list is defined -->

<positionX> <!-- req, xs:integer;coordinate --> </positionX>

<positionY> <!-- req, xs:integer;coordinate --> </positionY>

</RegionCoordinates>

</RegionCoordinatesList>

</PrivacyMaskRegion>

Copyright PSIA 2010

15 /PSIA/Custom/SelfExt/ContentMgmt/ZeroVi

deo

URI

/PSIA/Custom/SelfExt/ContentMgmt/ZeroVideo Type Service

Methods Query String(s) Inbound Data Return Result

Notes Zero Video service.

15.1 /PSIA/Custom/SelfExt/ContentMgmt/ZeroVideo/channels

URI

/PSIA/Custom/SelfExt/ContentMgmt/ZeroVideo/channels Type Resource

Function Access zero video channels.

Methods Query String(s) Inbound Data Return Result

GET None <ZeroVideoChannelList>

Notes
Since zero video input channels are resources that are defined by the hardware
configuration of the device, they cannot be created or deleted.

ZeroVideoChannelList XML Block

<ZeroVideoChannelList version=“1.0” xmlns=”urn:selfextension:psiaext-ver10-xsd”>

<ZeroVideoChannel/> <!-- opt -->

</ZeroVideoChannelList>

Copyright PSIA 2010

15.2 /PSIA/Custom/SelfExt/ContentMgmt/ZeroVideo/channels

/<ID>

URI

/PSIA/Custom/SelfExt/ContentMgmt/ZeroVideo/channels/

ID
Type Resource

Function Access zero video input channel properties.

Methods Query String(s) Inbound Data Return Result

GET <ZeroVideoChannel>

PUT <ZeroVideoChannel> <ResponseStatus>

Notes none

ZeroVideoChannel XML Block

<ZeroVideoChannel version=“1.0” xmlns=”urn:selfextension:psiaext-ver10-xsd”>

<id> <!-- req, xs:string;id --> </id>

<enabled> <!--req, xs:Boolean --> </eanbled>

<inputPort> <!-- req, xs:string --> </inputPort>

<brightnessLevel> <!-- opt, xs:integer, 0..100 --> </brightnessLevel>

<contrastLevel> <!-- opt, xs:integer, 0..100 --> </contrastLevel>

<sharpnessLevel> <!-- opt, xs:integer, 0..100 --> </sharpnessLevel>

<saturationLevel> <!-- opt, xs:integer, 0..100 --> </saturationLevel>

<hueLevel> <!-- opt, xs:integer, 0..100 --> </hueLevel>

<ZeroVideoChannel>

15.3 /PSIA/Custom/SelfExt/ContentMgmt/ZeroVideo/channels

/<ID>/enlarge

URI

/PSIA/Custom/SelfExt/ContentMgmt/ZeroVideo/channels/

ID/enlarge
Type Resource

Function Get or set zero chan video input enlarge configuration

Methods Query String(s) Inbound Data Return Result

GET <ZeroVideoEnlarge>

PUT <ZeroVideoEnlarge> <ResponseStatus>

Notes
mousePosition: device use this element to decide which sub screen should be enlarged.

ZeroVideoEnlarge XML Block

<ZeroVideoEnlarge version=“1.0” xmlns=”urn:selfextension:psiaext-ver10-xsd”>

<stat> <!--req, xs:string, “normal, enlarge” --> </stat>

<mousePosition> <!--wr,dep -->

 <x> <!--req, xs:integer --> </x>

 <y> <!--req, xs:integer --> </y>

</mousePosition>

<ZeroVideoEnlarge>

Copyright PSIA 2010

15.4 /PSIA/Custom/SelfExt/ContentMgmt/ZeroVideo/channels

/<ID>/switchScreen

URI

/PSIA/Custom/SelfExt/ContentMgmt/ZeroVideo/channels/

ID/switchScreen
Type Resource

Function Switch screen

Methods Query String(s) Inbound Data Return Result

PUT <ZeroVideoSwitch> <ResponseStatus>

Notes

ZeroVideoSwitch XML Block

<ZeroVideoSwitch version=“1.0” xmlns=”urn:selfextension:psiaext-ver10-xsd”>

<mode> <!--req, xs:string, “back, next” --> </mode>

<ZeroVideoSwitch>

15.5 /PSIA/Custom/SelfExt/ContentMgmt/ZeroVideo/channels

/<ID>/previewCfg

URI

/PSIA/Custom/SelfExt/ContentMgmt/ZeroVideo/channels/

ID/previewCfg
Type Resource

Function Get or set zero chan video input preview configuration

Methods Query String(s) Inbound Data Return Result

GET <ZeroVideoPreview>

PUT <ZeroVideoPreview> <ResponseStatus>

Notes
screenMode: sub screen nums per screen
subScreenOrder: sub screen order. Attribute „order‟ represent sub screen order, for

example: order=”1,3,5,2,4”.

ZeroVideoPreview XML Block

<ZeroVideoPreview version=“1.0” xmlns=”urn:selfextension:psiaext-ver10-xsd”>

<screenMode> <!--req, xs:integer --> </screenMode>

<enAudio> <!-- req, xs:boolean --> </enAudio>

<switchInterval> <!--req, xs:integer, in sec--> <switchInterval>

<subScreenOrderList> <!-- req -->

 <subScreenOrder order=””>

 <id> <!--xs:string; id --> </id>

 <screenMode> <!--req, xs:integer --> </screeMode>

</subScreenOrder>

<subScreenOrderList>

<ZeroVideoPreview>

Copyright PSIA 2010

16 /PSIA/Custom/SelfExt/ContentMgmt/ZeroSt

reaming

URI

/PSIA/Custom/SelfExt/ContentMgmt/ZeroStreaming Type Service

Methods Query String(s) Inbound Data Return Result

Notes Zero Streaming service

16.1 /PSIA/Custom/SelfExt/ContentMgmt/ZeroStreaming/stat

us

URI

/PSIA/Custom/SelfExt/ContentMgmt/ZeroStreaming/status Type Resource

Function Query the device zero streaming status.

Methods Query String(s) Inbound Data Return Result

GET <ZeroStreamingStatus>

Notes This command accesses the status of all device zero streaming sessions.

ZeroStreamingStatus XML Block

<ZeroStreamingStatus version=“1.0” xmlns=”urn:selfextension:psiaext-ver10-xsd”>

<totalStreamingSessions> <!-- req, xs:integer --> </totalStreamingSessions>

<StreamingSessionStatusList/> <!-- dep, only if there are sessions -->

</ZeroStreamingStatus>

16.2 /PSIA/Custom/SelfExt/ContentMgmt/ZerStreaming/chan

nels

URI

/PSIA/Custom/SelfExt/ContentMgmt/ZeroStreaming/channels Type Resource

Function Zero Streaming channels.

Methods Query String(s) Inbound Data Return Result

GET
<ZeroStreamingChannelList>

PUT <ZeroStreamingChannelList> <ResponseStatus>

POST <ZeroStreamingChannel> <ResponseStatus>

DELETE <ResponseStatus>

Copyright PSIA 2010

Notes

Zero Streaming channels may be hardwired, or it may be possible to create multiple

streaming channels per input if the device supports it. To determine whether it is

possible to dynamically create streaming channels, check the defined HTTP methods in

/PSIA/Custom/SelfExt/ContentMgmt/Streaming/channels/description.

ZeroStreamingChannelList XML Block

<ZeroStreamingChannelList version=“1.0” xmlns=”urn:selfextension:psiaext-ver10-xsd”>

<ZeroStreamingChannel/> <!-- opt -->

</ZeroStreamingChannelList>

16.3 /PSIA/Custom/SelfExt/ContentMgmt/ZeroStreaming/cha

nnels/<ID>

URI

/PSIA/Custom/SelfExt/ContentMgmt/ZeroStreaming/channels/ID Type Resource

Function Access zero streaming channels.

Methods Query String(s) Inbound Data Return Result

GET
<ZeroStreamingChannel>

PUT <ZeroStreamingChannel> <ResponseStatus>

DELETE <ResponseStatus>

Notes
<videoInputChannelID> refers to /PSIA/Custom/SelfExt/ContentMgmt/ZeroVideo/
/channels/ID.

ZeroStreamingChannel XML Block

<ZeroStreamingChannel version=“1.0” xmlns=”urn:selfextension:psiaext-ver10-xsd”>

 <id> <!-- req, xs:string;id --> </id>

 <channelName> <!-- req, xs:string --> </channelName>

 <enabled> <!-- req, xs:boolean --> </enabled>

 <Video>

 <!-- opt -->

 <enabled><!-- req, xs:boolean --></enabled>

 <videoInputChannelID> <!-- req, xs:string;id --> </videoInputChannelID>

 <videoCodecType>

<!-- req, xs:string, “MPEG4,MJPEG,3GP,H.264,MPNG” -->

</videoCodecType>

 <videoResolutionWidth> <!-- req, xs:integer --> </videoResolutionWidth>

 <videoResolutionHeight> <!-- req, xs:integer --> </videoResolutionHeight>

 <videoQualityControlType>

<!-- opt, xs:string, “cbr,vbr” -->

</videoQualityControlType>

 <constantBitRate> <!-- dep, xs:integer, in kbps --> </constantBitRate>

 <vbrUpperCap> <!-- dep, xs:integer, in kbps --> </vbrUpperCap>

 <vbrLowerCap> <!-- dep, xs:integer, in kbps --> </vbrLowerCap>

 <maxFrameRate> <!-- req, xs:integer, maximum frame rate x100 --> </maxFrameRate>

 </Video>

</ZeroStreamingChannel>

Copyright PSIA 2010

16.4 /PSIA/Custom/SelfExt/ContentMgmt/ZeroStreaming/cha

nnels/<ID>/status

URI

/PSIA/Custom/SelfExt/ContentMgmt/ZeroStreaming/channels/I

D/status
Type Resource

Function Get the list of zero streaming sessions associated with a particular channel.

Methods Query String(s) Inbound Data Return Result

GET

<ZeroStreamingSessionStatusList
>

Notes
Use of IPv4 or IPv6 addresses depends on the value of the <ipVersion>

field in /PSIA/System/Network/interfaces/ID/ipAddress.

StreamingSessionStatus XML Block

<ZeroStreamingSessionStatusList version=“1.0” xmlns=”urn:selfextension:psiaext-ver10-xsd”>

<StreamingSessionStatus>

<clientAddress> <!-- req -->

<ipAddress> <!-- dep, xs:string --> </ipAddress>

<ipv6Address> <!-- dep, xs:string --> </ipv6Address>

</clientAddress>

<clientUserName> <!-- opt, xs:string --> </clientUserName>

<startDateTime> <!-- opt, xs:datetime --> </startDateTime>

<elapsedTime> <!-- opt, xs:integer, seconds --> </elapsedTime>

<bandwidth> <!-- opt, xs:integer, in kbps --> </bandwidth>

</StreamingSessionStatu

s>

</ZeroStreamingSessionStatusList>

Copyright PSIA 2010

17 /PSIA/Custom/SelfExt/ContentMgmt/DynStr

eaming

URI

/PSIA/Custom/SelfExt/ContentMgmt/DynStreaming Type Service

Methods Query String(s) Inbound Data Return Result

Notes dynamical Streaming service

17.1 /PSIA/Custom/SelfExt/ContentMgmt/DynStreaming/statu

s

URI

/PSIA/Custom/SelfExt/ContentMgmt/DynStreaming/status Type Resource

Function Query the device streaming status.

Methods Query String(s) Inbound Data Return Result

GET
<DynStreamingStatus>

Notes This command accesses the status of all device streaming sessions.

DynStreamingStatus XML Block

<StreamingStatus version=“1.0” xmlns=”urn:selfextension:psiaext-ver10-xsd”>

<totalStreamingSessions> <!-- req, xs:integer --> </totalStreamingSessions>

<StreamingSessionStatusList/> <!-- dep, only if there are sessions -->

</StreamingStatus>

17.2 /PSIA/Custom/SelfExt/ContentMgmt/DynStreaming/chan

nels

URI

/PSIA/Custom/SelfExt/ContentMgmt/DynStreaming/channels Type Resource

Function Streaming channels.

Methods Query String(s) Inbound Data Return Result

GET <DynStreamingChannelList>

PUT
<DynStreamingChannelList> <ResponseStatus>

POST <DynStreamingChannel> <ResponseStatus>

DELETE <ResponseStatus>

Copyright PSIA 2010

Notes

动态流为动态视频通道所固有。如果动态通道支持创建或删除动态流的话，可以在此动态

通 道 内 创 建 或 创 建 动 态 流 。 通 过 查 看

/PSIA/Custom/SelfExt/ContentMgmt/DynVideo/inputs/channels/<ID>/status 中

<supportMutiStream>的值，可以获取该动态通道是否支持创建动态流。

DynStreamingChannelList XML Block

<DynStreamingChannelList version=“1.0” xmlns=”urn:selfextension:psiaext-ver10-xsd”>

<dynStreamingChannel/> <!-- opt -->

</DynStreamingChannelList>

Copyright PSIA 2010

17.3 /PSIA/Custom/SelfExt/ContentMgmt/DynStreaming/chan

nels/<ID>

URI

/PSIA/Custom/SelfExt/ContentMgmt/DynStreaming/channels/ID Type Resource

Function Access streaming channels.

Methods Query String(s) Inbound Data Return Result

GET <StreamingChannel>

PUT <StreamingChannel> <ResponseStatus>

DELETE <ResponseStatus>

Notes

<ControlProtocolList> identifies the control protocols that are valid for this type of

streaming.

<Unicast> is for direct unicast streaming.

<Multicast> is for direct multicast streaming.

<videoSourcePortNo> and <audioSourcePortNo> are the source port numbers for the
outbound video or audio streams.

<videoInputChannelID> refers to /PSIA/System/Video/inputs/channel/ID.

<audioInputChannelID> refers to /PSIA/System/Audio/channels/ID. It must be

configured as an input channel.

Use of IPv4 or IPv6 addresses depends on the value of the <ipVersion> field in

/PSIA/System/Network/interfaces/ID/ipAddress.

<Security> determines whether SRTP is used for stream encryption.

<audioResolution> is the resolution for the outbound audio stream in bits.

DynStreamingChannel XML Block

<dynStreamingChannel version=“1.0” xmlns=”urn:selfextension:psiaext-ver10-xsd”>

 <id> <!-- req, xs:string;id --> </id>

 <channelName> <!-- req, xs:string --> </channelName>

 <enabled> <!-- req, xs:boolean --> </enabled>

 <Transport>

 <!-- req -->

 <rtspPortNo> <!-- opt, xs:integer --> </rtspPortNo>

 <maxPacketSize> <!-- opt, xs:integer --> </maxPacketSize>

 <audioPacketLength> <!-- opt, xs:integer --> </audioPacketLength>

 <audioInboundPacketLength><!-- opt, xs:integer --> </audioInboundPacketLength>

 <audioInboundPortNo> <!-- opt, xs:integer --> </audioInboundPortNo>

 <videoSourcePortNo> <!-- opt, xs:integer --> </videoSourcePortNo>

 <audioSourcePortNo> <!-- opt, xs:integer --> </audioSourcePortNo>

 <ControlProtocolList>

 <!-- req -->

 <ControlProtocol>

 <!-- req -->

 <streamingTransport>

<!-- req, xs:string, “HTTP,RTSP” -->

</streamingTransport>

 </ControlProtocol>

 </ControlProtocolList>

 <Unicast>

 <!-- opt -->

 <enabled> <!-- req, xs:boolean --> </enabled>

 <interfaceID> <!-- opt, xs:string --> </interfaceID>

 <rtpTransportType>

<!-- opt, xs:string, “RTP/UDP,RTP/TCP” -->

</rtpTransportType>

Copyright PSIA 2010

 </Unicast>

 <Multicast>

 <!-- opt -->

 <enabled> <!-- req, xs:boolean --> </enabled>

 <userTriggerThreshold> <!-- opt, xs:integer --> </userTriggerThreshold>

 <destIPAddress> <!-- dep, xs:string --> </destIPAddress>

 <videoDestPortNo><!-- opt, xs:integer --></videoDestPortNo>

 <audioDestPortNo><!-- opt, xs:integer --></audioDestPortNo>

 <destIPv6Address><!-- dep, xs:string --></destIPv6Address>

 <ttl><!-- opt, xs:integer --></ttl>

 </Multicast>

 <Security>

 <!-- opt -->

 <enabled><!-- req, xs:boolean --></enabled>

 </Security>

 </Transport>

 <Video>

 <!-- opt -->

 <enabled><!-- req, xs:boolean --></enabled>

 <dynVideoInputChannelID><!-- req, xs:string;id --></dynVideoInputChannelID>

 <videoCodecType>

<!-- req, xs:string, “MPEG4,MJPEG,3GP,H.264,MPNG” -->

</videoCodecType>

 <videoScanType>

<!-- opt, xs:string, “progressive,interlaced” -->

</videoScanType>

 <videoResolutionWidth> <!-- req, xs:integer --> </videoResolutionWidth>

 <videoResolutionHeight> <!-- req, xs:integer --> </videoResolutionHeight>

 <videoPositionX> <!-- opt, xs:integer --> </videoPositionX>

 <videoPositionY> <!-- opt, xs:integer --> </videoPositionY>

 <videoQualityControlType>

<!-- opt, xs:string, “cbr,vbr” -->

</videoQualityControlType>

 <constantBitRate> <!-- dep, xs:integer, in kbps --> </constantBitRate>

 <fixedQuality> <!-- opt, xs:integer, percentage, 0..100 --> </fixedQuality>

 <vbrUpperCap> <!-- dep, xs:integer, in kbps --> </vbrUpperCap>

 <vbrLowerCap> <!-- dep, xs:integer, in kbps --> </vbrLowerCap>

 <maxFrameRate> <!-- req, xs:integer, maximum frame rate x100 --> </maxFrameRate>

 <keyFrameInterval> <!-- opt, xs:integer, milliseconds --> </keyFrameInterval>

 <rotationDegree> <!-- opt, xs:integer, degrees, 0..360 --></rotationDegree>

 <mirrorEnabled> <!-- opt, xs:boolean --> </mirrorEnabled>

 <snapShotImageType><!-- opt, xs:string, “JPEG,GIF,PNG” --> </snapShotImageType>

 </Video>

 <Audio>

 <!-- opt -->

 <enabled> <!-- req, xs:boolean --> </enabled>

 <audioInputChannelID> <!-- req, xs:string;id --> </audioInputChannelID>

 <audioCompressionType>

<!-- req, xs:string,

“G.711alaw,G.711ulaw,G.726,G.729,G.729a,G.729b,PCM,MP3,AC3,AAC,ADPCM”

-->

</audioCompressionType>

 <audioInboundCompressionType>

<!-- opt, xs:string,

“G.711alaw,G.711ulaw,G.726,G.729,G.729a,G.729b,PCM,MP3,AC3,AAC,ADPCM”

-->

</audioInboundCompressionType>

 <audioBitRate> <!-- opt, xs:integer, in kbps --> </audioBitRate>

 <audioSamplingRate> <!-- opt, xs:float, in kHz --> </audioSamplingRate>

 <audioResolution> <!-- opt, xs:integer, in bits --> </audioResolution>

 </Audio>

</dynStreamingChannel>

Copyright PSIA 2010

17.4 /PSIA/Custom/SelfExt/ContentMgmt/DynStreaming/chan

nels/<ID>/status

URI

/PSIA/Custom/SelfExt/ContentMgmt/DynStreaming/channels/ID

/status
Type Resource

Function Get the list of streaming sessions associated with a particular channel.

Methods Query String(s) Inbound Data Return Result

GET <DynStreamingSessionStatusList>

Notes
Use of IPv4 or IPv6 addresses depends on the value of the <ipVersion>

field in /PSIA/System/Network/interfaces/ID/ipAddress.

DynStreamingSessionStatus XML Block

<dynStreamingSessionStatusList version=“1.0” xmlns=”urn:selfextension:psiaext-ver10-xsd”>

<StreamingSessionStatus>

<clientAddress> <!-- req -->

<ipAddress> <!-- dep, xs:string --> </ipAddress>

<ipv6Address> <!-- dep, xs:string --> </ipv6Address>

</clientAddress>

<clientUserName> <!-- opt, xs:string --> </clientUserName>

<startDateTime> <!-- opt, xs:datetime --> </startDateTime>

<elapsedTime> <!-- opt, xs:integer, seconds --> </elapsedTime>

<bandwidth> <!-- opt, xs:integer, in kbps --> </bandwidth>

</StreamingSessionStatu

s>

</dynStreamingSessionStatusList>

17.5 /PSIA/Custom/SelfExt/ContentMgmt/DynStreaming/chan

nels/<ID>/http

URI

/PSIA/Custom/SelfExt/ContentMgmt/DynStreaming/channels/ID

/http
Type Resource

Function Access a live stream via http.

Methods Query String(s) Inbound Data Return Result

GET

videoCod ec Ty p e

videoS c an Ty p e

videoRes ol uti o nW i dth

videoRes ol uti o nH ei ght

videoP osi ti onX

videoP osi ti on Y

videoQ uality Co ntrol Ty pe

constantBitR ate

Stream over HTTP

Copyright PSIA 2010

POST

fixedQ u ali ty

vbrUpp erC ap

vbrLow erC ap

maxFram eR ate

keyFram eInterv al

rotati onD egree

mirrorE n abl e d

snapS h otIm age Ty p e

<Video>

Notes

This function is used to request a stream from the device using HTTP or HTTPS. This API
uses HTTP server-push with the MIME type multi par t/x-mi x ed-re pl ac e. HTTP streaming

must be enabled on the channel.

To determine the format of the video returned, either the parameters in <Video> or the
query string values are used, depending on the capabilities of the encoder.

Copyright PSIA 2010

For supported values, query /PSIA/Streaming/channels/ID/http/capabilities.

Example

GET /PSIA/Streaming/channels/777/http?videoCodecType=MJPEG HTTP/1.1

…

HTTP/1.1 200 OK

Content-Type: multipart/x-mixed-replace; boundary=<boundary>

--<boundary>

Content-Type: image/jpeg

Content-Length: xxx

Image data for a single frame

--<boundary>

…

17.6 /PSIA/Custom/SelfExt/ContentMgmt/DynStreaming/chan

nels/<ID>/picture

URI

/PSIA/Custom/SelfExt/ContentMgmt/DynStreaming/channels/ID/pic

ture
Type Resource

Function Get a snapshot of the current image.

Methods Query String(s) Inbound Data Return Result

GET

videoRes ol uti o nW i dth

videoRes ol uti o nH ei ght

videoP osi ti onX

videoP osi ti on Y

rotati onD egree

mirrorE n abl e d

snapS h otIm age Ty p e

Picture over HTTP

POST <Video>

Notes

All devices must support <snapS hotIm ag eTy pe > of “JPEG”.
To determine the format of the picture returned, either the parameters in <Video> or the

query string values are used, or, if the Accept: header field is present in the request and
the server supports it, the picture is returned in that format.

For supported values, query /PSIA/Streaming/channels/ID/picture/capabilities.

Examples:

GET /PSIA/Streaming/channels/123456/picture?snapShotImageType=JPEG

POST /PSIA/Streaming/channels/123456/picture

…

<?xml version=“1.0” encoding=“UTF-8”?>

<Video>…</Video>

GET /PSIA/Streaming/channels/123456/picture

Accept: image/jpeg

Copyright PSIA 2010

17.7 /PSIA/Custom/SelfExt/ContentMgmt/DynStreaming/chan

nels/<ID>/requestKeyFrame

URI

/PSIA/Custom/SelfExt/ContentMgmt/DynStreaming/channels/ID

/requestKeyFrame
Type Resource

Function Request that the device issue a key frame on a particular channel.

Methods Query String(s) Inbound Data Return Result

PUT

Notes
The key frame that is issued should include everything necessary to initialize a video
decoder, i.e. parameter sets for H.264 or VOS for MPEG-4.

Copyright PSIA 2010

18 /PSIA/Custom/SelfExt/ContentMgmt/Storage

URI

/PSIA/SelfExt/Custom/ContentMgmt/storage Type Service

Function

配置存储设备

Methods Query String(s) Inbound Data Return Result

GET <storage>

Notes

storage XML Block

<storage version=“1.0” xmlns=”urn:selfextension:psiaext-ver10-xsd”>

<hddList> <!-- opt --> </hddList >

<nasList> <!-- opt --> </nasList >

<workMode> <!-- opt, xs:string, “group, quota, extract” --> <workMode>

</storage>

18.1 /PSIA/Custom/SelfExt/ContentMgmt/Storage/hdd

URI

/PSIA/SelfExt/Custom/ContentMgmt/Storage/hdd Type Resource

Function

设备硬盘管理

Methods Query String(s) Inbound Data Return Result

GET <hddList>

Notes

hddList XML Block

<hddList version=“1.0” xmlns=”urn:selfextension:psiaext-ver10-xsd”>

<hdd> <!-- opt --> </hdd>

</hddList>

18.2 /PSIA/Custom/SelfExt/ContentMgmt/Storage/hdd/<ID>

URI

/PSIA/SelfExt/Custom/ContentMgmt/Storage/hdd/<ID> Type Resource

Function

配置某个具体硬盘

Methods Query String(s) Inbound Data Return Result

GET <hdd>

Copyright PSIA 2010

PUT <hdd> <ResponseStatus>

Notes
<property>硬盘属性RW读写，RO只读，Redund 冗余

<group>该硬盘归属于哪个盘组，仅当硬盘工作在盘组模式时有效

hdd XML Block

<hdd version=“1.0” xmlns=”urn:selfextension:psiaext-ver10-xsd”>

<id> <!-- ro, req, xs:string;id --> </id>

<hddName> <!-- ro, req, xs:string --> </hddName>

<hddPath> <!-- ro, opt, xs:string --> </hddPath>

<hddType>

<!-- ro, req, xs:string, “IDE,SATA,eSATA,RAID5”, etc -->

</hddType>

<status> <!--ro, req, xs:string “ok, unformatted, error, idle, mismatch” --> </status>

 <capacity> <!-- ro, req, xs:float, in MB --> </capacity>

 <freeSpace> <!-- ro, req, xs:float, in MB --> </freeSpace>

<property> <!--req, xs:string “RW, RO, Redund”--> </property>

<group> <!-- opt, xs:string; id --> </group>

</hdd>

18.3 /PSIA/Custom/SelfExt/ContentMgmt/Storage/hdd/<ID>/for

mat

URI

/PSIA/SelfExt/Custom/ContentMgmt/Storage/hdd/<ID>/format Type Resource

Function

格式化某个硬盘

Methods Query String(s) Inbound Data Return Result

PUT <hdd>

Notes 格式化期间，可以通过下面的接口获取格式化进度

18.4 /PSIA/Custom/SelfExt/ContentMgmt/Storage/hdd/<ID>/for

matStatus

URI

/PSIA/SelfExt/Custom/ContentMgmt/Storage/hdd/<ID>/format

Status
Type Resource

Function

格式化某个硬盘

Methods Query String(s) Inbound Data Return Result

GET <formatStatus>

Notes

formatStatus XML Block

Copyright PSIA 2010

<formatStatus version=“1.0” xmlns=”urn:selfextension:psiaext-ver10-xsd”>

<formating> <!-- ro, req, xs:boolean --> </formating>

<percent> <!-- ro, req, xs:integer “0-100” --> </percent>

</formatStatus>

18.5 /PSIA/Custom/SelfExt/ContentMgmt/Storage/nas

URI

/PSIA/SelfExt/Custom/ContentMgmt/Storage/nas Type Resource

Function

网络附属存储设备管理

Methods Query String(s) Inbound Data Return Result

GET <nasList>

PUT <nasList> <ResponseStatus>

POST <nas> <ResponseStatus>

Notes

nasList XML Block

<nasList version=“1.0” xmlns=”urn:selfextension:psiaext-ver10-xsd”>

<nas> <!-- opt --> </nas>

</nasList>

18.6 /PSIA/Custom/SelfExt/ContentMgmt/Storage/nas/<ID>

URI /PSIA/Custom/SelfExt/ContentMgmt/Storage/nas/<ID> Type Resource

Function 配置指定的网络附属存储设备

Methods Query String(s) Inbound Data Return Result

GET <nas>

PUT <nas> <ResponseStatus>

DELETE <ResponseStatus>

Notes
<nasType>网络盘类型，目前支持NFS，iSCSI。

<property>网络盘属性RW读写，RO只读，RDD冗余
<group>该硬盘归属于哪个盘组，仅当硬盘工作在盘组模式时有效

NAS XML Block

<nas version=“1.0” xmlns=”urn:selfextension:psiaext-ver10-xsd”>

<id> <!-- req, xs:string; id --> </id>

<addressingFormatType>

<!-- req, xs:string, “ipaddress,hostname”-->

</addressingFormatType>

<hostName> <!-- dep, xs:string --> </hostName>

<ipAddress> <!-- dep, xs:string --> </ipAddress>

<ipv6Address> <!-- dep, xs:string --> </ipv6Address>

Copyright PSIA 2010

<portNo> <!-- req, xs:integer --> </portNo>

<nasType> <!--req, xs:string, “NFS, iSCSI …” --> </nasType>

<path> <!--req, xs:string --> </path>

<status> <!--ro, req, xs:string “online, offline” --> </status>

 <capacity> <!-- ro, req, xs:float, in MB --> </capacity>

 <freeSpace> <!-- ro, req, xs:float, in MB --> </freeSpace>

<property> <!--req, xs:string “RW, RO, RDD”--> </property>

<group> <!-- opt, xs:string; id --> </group>

</nas>

18.7 /PSIA/Custom/SelfExt/ContentMgmt/Storage/nas/<ID>/for

mat

URI

/PSIA/SelfExt/Custom/ContentMgmt/nas/<ID>/format Type Resource

Function

格式化某个网盘

Methods Query String(s) Inbound Data Return Result

PUT <hdd>

Notes 格式化期间，可以通过下面的接口获取格式化进度

18.8 /PSIA/Custom/SelfExt/ContentMgmt/Storage/nas/<ID>/for

matStatus

URI

/PSIA/SelfExt/Custom/ContentMgmt/Storage/nas/<ID>/format

Status
Type Resource

Function

格式化某个硬盘

Methods Query String(s) Inbound Data Return Result

GET <formatStatus>

Notes

formatStatus XML Block

<formatStatus version=“1.0” xmlns=”urn:selfextension:psiaext-ver10-xsd”>

<formating> <!-- ro, req, xs:boolean --> </formating>

<percent> <!-- ro, req, xs:integer “0-100” --> </percent>

</formatStatus>

18.9 /PSIA/Custom/SelfExt/ContentMgmt/Storage/group

URI

/PSIA/SelfExt/Custom/ContentMgmt/Storage/diskGroup Type Resource

Copyright PSIA 2010

Function

盘组管理

Methods Query String(s) Inbound Data Return Result

GET <diskGroupList>

Notes

groupList XML Block

<diskGroupList version=“1.0” xmlns=”urn:selfextension:psiaext-ver10-xsd”>

<diskGroup> <!-- req --> </diskGroup>

</diskGroupList>

18.10 /PSIA/Custom/SelfExt/ContentMgmt/Storage/diskGroup/<

ID>

URI

/PSIA/SelfExt/Custom/ContentMgmt/Storage/diskGroup/<ID> Type Resource

Function

管理特定的盘组

Methods Query String(s) Inbound Data Return Result

GET <diskGroup>

PUT <diskGroup> <ResponseStatus>

Notes trackId see /PSIA/ContentMgmt/record/tracks/<id>

diskGroup XML Block

<diskGroup version=“1.0” xmlns=”urn:selfextension:psiaext-ver10-xsd”>

<id> <!-- req, xs:string; id --> </id>

<trackList> <!-- req, xs:boolean -->

 <trackID> <!-- opt, xs:string; id --> <trackID>

</trackList>

</diskGroup>

Copyright PSIA 2010

19 /PSIA/Custom/SelfExt/ContentMgmt/downlo

ad

URI

/PSIA/Custom/SelfExt/ContentMgmt/download Type Resource

Function Down load a special record segment

Methods Query String(s) Inbound Data Return Result

GET <downloadRequest > Record data

PUT < downloadRequest> <ResponseStatus>

Notes

 playbackURI is returned by the search service. In the url, there may be some
information about the name or size of the segment. For example,

rtsp://<host>/Streaming/tracks/<id>?name=track1segment1&size=1024B

downloadRequest XML Block

<downloadRequest version=“1.0” xmlns=“http://urn:selfextension:psiaext-ver10-xsd”>

<playbackURI> <!—req, xs:string --> </playbackURI>

</downloadRequest>

20 Metadata Identity String(MIDS; “metaID”)

In order to have a large variety of metadata types, that can be commonly processed, and yet
allow flexibility in designing and developing metadata product components, a hierarchical
namespace, forming a metadata taxonomy, is employed. This notation is based on a URI

structure. The format is:

/<domain>/<class>/<type>[/attribute/LID][/TransID][/…]

Definitions for the above URI fields are:

20.1 MIDS Field Definitions

Copyright PSIA 2010

Field/Name Requirement Level Comments

Domain Mandatory

The „virtual domain‟ name of the ordaining
body for the format and definitions that are
used for the associated metadata/event
information. The domain determines the
format, and thus the processing and
interpretation, of metadata/event instance data.

Class Mandatory

Domain-specific „Class‟ of the metadata/event

information. Some examples are:
“VideoMotion”, “AccessCtl”, “PtOfSale”,
“Intrusion”, “VideoAnalytics”, etc.

Type Mandatory

Class-dependent type of metadata/event
information. For example, within a class called
“VideoMotion” there would be types such as:

“motion”, “motionStart”, “motionStop”,
“zoneActive”, “zoneInactive”, etc.

Attribute/LID
(„Local ID‟) Dependent / Optional

Free-form field that is available for use as
additional descriptive information using the
following rules:

> The convention is that this field MUST be
used as the „Local ID‟ field for all

metadata/event occurrences that are related to,
or associated with, a channel/port/stream ID
(i.e. the „source local ID‟; see Section 7.1).

> For metadata/event occurrences that have no
correlation to a channel or port (etc.), this field

is optional.

TransID
(Transaction ID) Optional

A string field that uniquely identifies this
occurrence instance to the source. If a source

entity requires a transactional level
acknowledgement, then this field MAY be
used as an identifier for expressly

acknowledging a specific metadata/event
instance. Please note that the source
UUID/GUID and timestamp of a

metadata/event instance are the standard fields
used for uniqueness. Additional fields are

optional.

In this hierarchical namespace scheme, the Domain, Class and Type fields are REQUIRED. The
Attribute/LID and TransID fields are optional. To provide consistent parsing and decoding, the

above described fields are „positonal‟ within an MIDS URI. Empty slots after the
Domain/Class/Type need not be present. Intervening slots that are empty (e.g. an ID field is
present but there is no attribute/LID field) are note by adjacent „slashes‟ (“//”). The following

example depicts an „empty‟ URI Attribute/LID field:

/hikvision.com/VideoMotion/motion//C1EB2D39

In the above example, a hypothetical intrusion alarm carries a TransID field (“C1EB2D39”) in
its MIDS, but no attribute/LID field. As such, the empty attribute/LID field is noted by the

adjacent slashes (“//”) after the type field of “motion.”

Copyright PSIA 2010

Other information may be appended to the end of an MIDS, as needed (though it is not
encouraged). Any appended, after the ID field, is ignored by the common processing code and

considered instance or manufacturer specific.

The figure below depicts the relationship between domains, classes, and types.

Figure 18.2.1: Domain/Class/Type Hierarchy

Metadata Taxonomy:

A Hierarchical Namespace

Domain:

/ /hikvision.com

Class:

/ System

Ty pe:

/ Boot

Type:

/ Fault

Type:
/ Shutdown

…….

Class:

/ VideoMotion

Type:

/ Mot ion

Type:

/ Mot ion.start

Type:

/ Mot ion.stop

…….

Copyright PSIA 2010

The aforementioned taxonomy enables a vast amount of flexibility in the definition of
numerous classes, types, and versions, of metadata information while avoiding „collisions‟ among

metadata publishers. It also advantageously lends itself to subscribing, filtering, and forwarding
logic since it is hierarchical in nature with ordinally positioned fields. Additionally, the MIDS

design follows well known URI definitions in a REST-like manner, while providing a level of user
friendliness via its self-declaring structure. A final benefit is that this structure can be optimized for
extremely fast „look-ups‟ . The term metadata „category‟ covers a specific „domain/class‟ pair.

20.1.1 Domain:event.hikvision.com

Domain:event.hikvison.com 定义如下表：

Class Type Attribute/LID („Local

ID‟)
TransID (Transaction
ID)

VideoMotion motion video input
port/dynamical video
input port

motionStart

motionStop

Intrusion alarmIn alarm In port

20.1.2 Domain:log.hikvision.com

Domain:log.hikvison.com 定义如下表：

Class Type Attribute/LID
(„Local ID‟)

TransID (Transaction
ID)

Alarm alarmIn alarm in port

alarmOut alarm out port

motionStart video input port

motionStop video input port

hideStart video input port

hideStop video input port

vcaStart video input port

vcaStop video input port

Exception videoLost video input port

videoException video input port

videoFormatMismatch video input port

illlegealAccess

hdError

hdFull

netBroken

recordError video input port

ipcDisconnect video input port

ipcIpConfilict video input port

ipConflict

Operation devicePowerOn

devicePowerOff

Copyright PSIA 2010

deviceRecycle

stopAbnormal

localLogin

localLogOut

localCfgPara

localUpdate

localStartRec

localStopRec

localCtrlPtz

localLockFile

localUnlockFile

localManulAlarm

localFormatDisk

localAddIpc

localDelIpc

localSetIpc

localPlayByFile

localPlayByTime

localDownloadCfgFile

localUploadCfgFile

localDownloadRecFile

localDownloadPicFile

localAddNas

localDelNas

localSetNas

localConfRebRaid

localConfSpareRaid

localAddRaid

locaDelRaid

localMigRaid

localRebRaid

localQuickConfRaid

localAddVd

localDelVd

localStartPicRec

localStopPicRec

localSetSnmp

localResetPasswd

localTagOperation

remotePowerOff

remotePowerRecycle

remoteLogin

remoteLogout

remoteCfgPara

remoteUpgrade

remoteStartRec

Copyright PSIA 2010

remoteStopRec

remoteCtrlPtz

remoteLockFile

remoteUnlockFile

remoteManulAlarm

remoteFormatHd

remoteAddIpc

remoteDelIpc

remoteSetIpc

remotePlayByFile

remotePlayByTime

remoteDownloadCfgFile

remoteUploadCfgFile

remoteDownloadRecFile

remoteGetPara

remoteGetStatus

remoteStartTransChan

remoteStopTransChan

startVoiceTalk

stopVoiceTalk

remoteArm

remoteDisArm

remoteAddNas

remoteDelNas

remoteSetNas

remoteConfRebRaid

remoteConfSpareRaid

remoteAddRaid

remoteDelRaid

remoteMigRaid

remoteRebRaid

remoteQuickConfRaid

remoteAddVd

remoteDelVd

remoteRpVd

remoteUpgradeRaid

remoteStartPicRec

remoteStopPicRec

remotePicBackUp

remoteSetSnmp

remoteTagOperation

Infomation hddInfo

smartInfo

startRec

stopRec

delExpiredRec

Copyright PSIA 2010

nasInfo

raidInfo

21 /PSIA/Custom/SelfExt/ContentMgmt/logSearch

本服务定义了海康威视扩展的日志搜索协议。本服务借鉴了RaCM协议serach的实现方式，除了请求

及相应的xml内容不同外，整个日志搜索机制与RaCM中的search服务相同。

URI /PSIA/Custom/SelfExt/ContentMgmt/logSearch/ Type Service

Requirement

Level
- All Profiles -

Function
Mandatory description of the REST method parameters and formats available to

functionally manipulate the „logSearch‟ resource/object.

Methods
Query

String(s)
Inbound Data Return Result

GET None <CMSearchDescription> <CMSearchResult or…>

PUT N/A N/A
<ResponseStatus w/error

code>

POST

None

<CMSearchDescription>

<CMSearchResult

or…ResponseStatus w/error
code>

DELETE N/A N/A <ResponseStatus w/error code>

Notes The „GET‟ or „POST‟ messages require a “CMSearchDescription” XML document to engage
a search. An example XML document instance follows.

Example(s)

<?xml version="1.0" encoding="UTF-8"?>

<CMSearchDescription version="1.0" xmlns="urn:psialliance-org">

<searchID>{812F04E0-4089-11A3-9A0C-0305E82C2906}</searchID>

<timeSpanList>

<timeSpan>

<startTime>2009-06-10T12:00:00Z</startTime>

<endTIme>2009-06-10T13:30:00Z</endTime>

<timeSpan>

</timeSpanList>

<metadataList>

<metadataDescriptor>

<metaID>/event.hikvision.com/VideoMotion</metaID>

</metadataDescriptor>

<metadataList>

<searchResultPosition> 20 </searchResultPosition>

<maxResults> 40 </maxResults>

</CMSearchDescription>

The above example is for a search of log of video motion detection, between twelve noon and 1:30PM on June 10th,

2009 for Video Motion events. The requester does not want more than 40 results passed back in the search
response.

Copyright PSIA 2010

<?xml version="1.0" encoding="UTF-8"?>

<CMSearchDescription version="1.0" xmlns="urn:psialliance-org">

<searchID>{77E105E8-4C21-AA05-37B4-189A070A5B22}</searchID>

<sourceID> {3F2504E0-4F89-11D3-9A0C-0305E82C3301} </sourceID>

<timeSpanList>

<timeSpan>

<startTime>2009-07-12T09:00:00Z</startTime>

<endTIme>2009-07-12T17:30:00Z</endTime>

<timeSpan>

</timeSpanList>

<contentTypeList>

<contentType>video</contentType>

<contentType>audio</contentType>

</contentTypeList>

<maxResults>40</maxResults>

<metadataList>

<metadataDescriptor>

<metaID>/event.hikvision.com/VideoMotion</metaID>

</metadataDescriptor>

<metadataList>

</CMSearchDescription>

The above example is a search for Video Motion, betw een the hours of 9AM and 5:30PM, on July the 12th, w ith

respect to a specif ic source whose ID (GUID) is: 3F2504E0-4F 89-11D 3-9A0C -0305E82C 3301. This example GUID

corresponds to an input source which can be resolved to an IP address. Please note that in this example, the
search requester only wants video and audio segments returned for matches (contenTypeList).

<?xml version="1.0" encoding="UTF-8"?>

<CMSearchDescription version="1.0" xmlns="urn:psialliance-org">

<searchID>{F44EC031-4F89-3D90-9A14-0305E828D902}</searchID>

<metadataList>

<metadataDescriptor>

<metaID>/event.hikvision.com/VideoMotion</metaID>

</metadataDescriptor>

<metadataList>

</CMSearchDescription>

The above example is a simple search for all log.

<?xml version="1.0" encoding="UTF-8"?>

<CMSearchDescription version="1.0" xmlns="urn:psialliance-org"

<searchID>{812F04E0-4089-11A3-9A0C-0305E82C2906}</searchID>

<timeSpanList>

<timeSpan>

<startTime>2009-06-10T12:00:00Z</startTime>

<endTIme>2009-06-10T13:30:00Z</endTime>

<timeSpan>

</timeSpanList>

<metadataList>

 <metadataDescriptor>

<metaID>/event.hikvision.com/PointOfSale</metaID>

 </metadataDescriptor>

<metadataList>

<searchText>”VOID”</searchText>

</CMSearchDescription>

Copyright PSIA 2010

22 /PSIA/Custom/SelfExt/Bond

URI

/PSIA/Custom/SelfExt/Bond Type Service

Function Get or set the configuration information of Bond net interfaces.

Methods Query String(s) Inbound Data Return Result

GET <BondList>

Notes Bond网卡配置

BondList XML Block

<BondList version=“1.0” xmlns=”urn:selfextension:psiaext-ver10-xsd”>

<Bond>

</BondList>

22.1 /PSIA/Custom/SelfExt/Bond/<ID>

URI

/PSIA/Custom/SelfExt/Bond/ID Type Resource

Function Get or set the configuration information of Bond net interface

Methods Query String(s) Inbound Data Return Result

GET <Bond>

PUT <Bond> <ResponseStatus>

Notes

Bond XML Block

<Bond version=“1.0” xmlns=”urn:selfextension:psiaext-ver10-xsd”>

<id> <!-- req, xs:string --> </id>

<enabled> <!-- req, xs:boolean --> </enabled>

<workMode> <!-- req, xs:string;”balance-rr, active-backup” --> </workMode>

<primaryIf> <!-- req, xs:string;id --></primaryIf>

<slaveIfList> <!-- req -->

 <ethernetIfId> <!-- req, xs:string; id --> </ethernetIfId>

</slaveIfList>

<IPAddress>

<ipVersion> <!-- req, xs:string, “v4,v6,dual” --></ipVersion>

<addressingType> <!-- req, xs:string, “static,dynamic,apipa” --> </addressingType>

<ipAddress> <!-- dep, xs:string --> </ipAddress>

<subnetMask> <!-- dep, xs:string, subnet mask for IPv4 address --> </subnetMask>

<ipv6Address> <!-- dep, xs:string --> </ipv6Address>

<bitMask> <!-- dep, xs:integer, bitmask IPv6 address --> </bitMask>

<DefaultGateway> <!-- dep -->

<ipAddress> <!-- dep, xs:string --> </ipAddress>

Copyright PSIA 2010

<ipv6Address> <!-- dep, xs:string --> </ipv6Address>

</DefaultGateway>

<PrimaryDNS> <!-- dep -->

<ipAddress> <!-- dep, xs:string --> </ipAddress>

<ipv6Address> <!-- dep, xs:string --> </ipv6Address>

</PrimaryDNS>

<SecondaryDNS> <!-- dep -->

<ipAddress> <!-- dep, xs:string --> </ipAddress>

<ipv6Address> <!-- dep, xs:string --> </ipv6Address>

</SecondaryDNS>

</IPAddress>

<Link xmlns=”urn:selfextension:psiaext-ver10-xsd”> <!-- opt -->

<MACAddress> <!-- req, xs:string> </MACAddress>

<autoNegotiation> <!-- req, xs:boolean> </autoNegotiation>

<speed> <!-- req, xs:integer, “10, 100, 1000” --><speed>

<duplex> <!-- req, xs:string, “half, full”> </duplex>

<MTU> <!-- req, xs:integer --> </MTU>

</Link>

</Bond>

Copyright PSIA 2010

23 /PSIA/Custom/SelfExt/Holiday

URI

/PSIA/Custom/SelfExt/Holiday Type Resource

Function Access the list of PTZ configuration.

Methods Query String(s) Inbound Data Return Result

GET
<holidayList >

PUT <holidayList> <ResponseStatus>

Notes

holidayList XML Block

<HolidayList version=“1.0” xmlns=“http://urn:selfextension:psiaext-ver10-xsd”>

<holiday/> <!-- opt -->

</HolidayList>

23.1 /PSIA/Custom/SelfExt/Holiday/ID

URI

/PSIA/Custom/SelfExt/Holiday/ID/ Type Resource

Function Access or control a ptz channel.

Methods Query String(s) Inbound Data Return Result

GET
<holiday >

PUT <holiday> <ResponseStatus>

Notes

是否含有复合元素<holidayDate>、<holidayWeek>及<holidayMonth>由<holidayMode>

决定

<holidayMode>:date: 假期从某年某月某日到某年某月某日

<holidayMode>:week: 假期从某月的第几个周几到某月的第几个周几

<holidayMode>:month: 假期从某月某日到某月某日

holiday XML Block

<holiday version=“1.0” xmlns=“http://urn:selfextension:psiaext-ver10-xsd”>

<id> <!-- req, xs:string;id --> </id>

<enabled> <!-- req, xs:boolean --> </enabled>

<holidayMode> <!-- req, xs:string, ”date, weeek, month” --> </holidayMode>

<holidayName> <!-- req, xs:string --> </holidayName>

<holidayDate> <!-- dep -->

<startDate> <!-- dep, xs:date --> </startDate>

<endDate> <!-- req, xs:date --> </endDate>

</holidayDate>

Copyright PSIA 2010

<holidayWeek> <!-- dep -->

 <startWeek> <!-- req -->

<monthOfYear> <!-- req --> </monthOfYear>

<sequence> <!-- req, xs:integer, 1…5 --> </sequence>

<dayOfWeek>

<!-- req, ISO8601 weekday number, 1=Monday” -->

</dayOfWeek>

 </startWeek>

<endWeek> <!-- req -->

<monthOfYear> <!-- req --> </monthOfYear>

<sequence> <!-- req, xs:integer, 1…5 --> </sequence>

<dayOfWeek>

<!-- req, ISO8601 weekday number, 1=Monday” -->

</dayOfWeek>

 </endWeek>

</holidayWeek>

<holidayMonth> <!-- dep -->

 <startMonth> <!-- req -->

 <monthOfYear> <!-- req, xs:integer, “1…12” --> </monthOfYear>

 <dayOfMonth> <!-- req, xs:integer, “1…31” --> </dayOfMonth>

 </startMonth>

<endMonth> <!-- req -->

<monthOfYear> <!-- req, xs:integer, “1…12” --> </monthOfYear>

<dayOfMonth> <!-- req, xs:integer, “1…31” --> <dayOfMonth>

</endMonth>

</holidayMonth>

</holiday>

Copyright PSIA 2010

24 Appendix A: Codec Type Dictionary

The „Codec Tag‟s below represent the literal ASCII strings employed to identify the specific codec
standards listed below.

Codec Tag (Literal) Codec Tag Description

Audio Codecs

G.711 ITU G.711 (PCM) audio codec format (a-/u-law determined by SDP or XML

G.711a ITU G.711(PCM) audio codec format; a-law encoding
G.711u ITU G.711 (PCM) audio codec format; u-law encoding
G.726 ITU G.726 (ADPCM)audio codec format (bitrate advertised by SDP or XML)

G.723.1 ITU G.723.1 audio codec format

G.728 ITU G.728 audio codec format
G.722, G.722.1,

G.722.2

ITU G.722/.1/.2 audio codec formats (SB-ADPCM)

Copyright PSIA 2010

G.728 ITU G.728 (LD-CELP) audio

codec format G.729, G.729.1 ITU G.729/.1

(CS-ACELP) audio codec format MP3

 MPEG-1/Layer 3 audio codec

format

AAC MPEG-2/4 Advanced Audio Codec format

Video Codecs

MPEG4-SP ISO/IEC 14496-2 MPEG-4 Simple Profile

MPEG4-ASP ISO/IEC 14496-2 MPEG-4 Advanced Simple Profile

MPEG4-MP ISO/IEC 14496-2 MPEG-4 Main Profile

H.264-BP ISO/IEC 14496-10/ITU H.264

Baseline Profile H.264-MP ISO/IEC 14496-10/ITU

H.264 Main Profile H.264-HP ISO/IEC

14496-10/ITU H.264 High Profile

H.264SVC-BP ISO/IEC 14496-10/ITU H.264 Scalable Video Codec

(SVC), Baseline Profile encoding (Must read

s-props/p-props and SDP for embedded stream info)

H.264SVC-MP ISO/IEC 14496-10/ITU H.264 Scalable Video Codec

(SVC), Main Profile encoding (Must read s-props/p-props

and SDP for embedded stream info)

MPEG2-MP ISO/IEC 13818 MPEG-2 Main Profile

MJPEG Motion version (multi- frame) of ISO/IEC JPEG video

encoding (see below) JPEG ISO/IEC 10918 JPEG video encoding JPEG2000

 ISO/IEC 1544

