WaveLab Command Line Interface
Version 1.15
History:

Version 1.12 adds a change in the Marker topic (MRK).

Version 1.13 adds _MI_.

Version 1.15 adds multi file opening and AES31 file opening

Introduction

An audio file can be opened in WaveLab from a remote control application and several additional operations related to this audio file can be performed. Further in this text we call "RCA" the Remote Control Application. 

The communication between WaveLab and the RCA is achieved with the WM_COPYDATA message, as described in the Win32 SDK. We give an example further.

When WaveLab opens a file, it opens it in mode "share-read" (for the RCA to be able to read it in the same time) but not in mode "share-write" (to prevent the RCA writing it).

Because the user might want to modify the file in WaveLab and save it under the same name, the file must not remain opened by the RCA when the user switches to WaveLab. That means that the RCA should close the audio file when calling WaveLab (but the RCA usually caches the waveform display). When the RCA gets the focus again, it checks if the audio file has undergone any change (by looking at its date; see also the SAVED notification further). In the positive case, the RCA updates its display or whatever.

This interface requires WaveLab version 5.01a or higher.

Command-line formatting

The command line must start with the audio file name (with the complete path). Then, several optional arguments (commands) can follow. They can be in any order and in any number. Each one is separated by the symbol "|". Each command consists of a short predefined tag followed by the symbol "=" and then a value. There are complete examples further.

File argument

It can be:

· A single audio file name, with the complete path. Eg. “C:\temp\MyPiano.wav”

· Multiple audio file names, each with the complete path, separated from each other by the “*” character. This allows to open 2 mono files as a single apparent stereo file in WaveLab.

Eg. “C:\temp\MyPianoL.wav* C:\temp\MyPianoR.wav”

· An AES31 file name, with the complete path. In that last case, all further command tags are ignored.

Predefined command tags

SL

Sample Selection Left

Value is sample index, starting from 0.

Example: SL=1000

See also tag CH.

SR

Sample Selection Right
Value is sample index, starting from 0. This value specifies the last selected sample (inclusive: eg. if a file is made of 1000 samples, SR shouldn't be above 999).

Example: SR=2000

Note: if the sample selection is to be cancelled, specify exactly: "SL=0" and "SR=-1"

See also tag CH.

CRS

Edit Cursor Position

Value is sample index, starting from 0.

Example: CRS=10000

See also tag CH.

CH

Channel mask

If the command CRS is received,  it is possible to additionally specify on which channel(s) the edit cursor should be placed on. In the same way, if the command SL/SR is received,  it is possible to additionally specify which channel(s) should get selected.

If this command is omitted, then all channels are used.

Value can be 1 (left), 2 (right) or 3 (left and right).

Example: CH=1

OFS

Time Ruler Offset

This command allows to specify an offset for the time ruler. Value is a sample index which can be positive or negative. Eg. if offset is 1000, then the time ruler starts at 1000.
Note: this is only a display setting and all time positions specified in other commands have always a zero origin.

Example:

OFS=10000

Note: the value (abs(offset) + length of file) shouldn't exceed 0x7FFFFFFF or the display would be wrong (about 13 hours 30 min).

ZOOM

Sample Range Display

With this command, the RCA can specify the start position from which WaveLab should display the audio, and how many samples to display. WaveLab scrolls and zooms the display accordingly.

"Value" is composed of a sample index and a number of samples, separated by a comma.

Example:

"ZOOM=10000,20000" will display the samples starting from position 10000 to position 10000+20000.

Note: The number of samples is an approximation: it might sligthly be greater than the requested value.

BPM

Tempo, as Beat Per Minute

This is used for the time ruler scale.

The value can be a floating point value.

If this command is received, then the time ruler automatically switches to the unit "Meter". 

Example: BPM=140.253

See also tags TCK and SGN.

TCK

Ticks per Black note

The value represents the resolution of the MIDI sequencer, if any is used.

This value is used for the time ruler scale.

If this command is received, then the time ruler automatically switches to the unit "Meter". 

Example: TCK=384

See also tags BPM and SGN.

SGN

Music Time Signature

This is used for the WaveLab time ruler.

If this command is received, then the time ruler automatically switches to the unit "Meter". 

The setting is composed of two values separated by the symbol "/".

Example: SGN=4/8

See also tags BPM and TCK.

FRM

Time Code Frames

This is used for the WaveLab time ruler.

If this command is received, then the time ruler automatically switches to the unit "Time Code". 

The value can be one of the following: 24, 25, 29.97, 30 or 75.

Example: FRM=29.97

_NR_

Don’t restore layout

This is used to indicate WaveLab that the previous window layout should not be restored.

_MI_

Multiple instances

This is used to indicate that a new instance of WaveLab should be executed, even if one is already running. Must be placed before _NR_ if this one is also specified (_MI_|_NR_).

MRK[...]

Marker

Any number of markers, of one or more types, can be created. Marker names can also be specified.

These remotely created markers are not saved when the audio file is saved. They are temporarily created for the user's interest. Whenever the RCA creates one or more markers, all markers that were previously created by the RCA are automatically erased. That means that if the RCA wants to synchronize its markers with those in WaveLab, it has to notify all of them again whenever a change occurs (eg. the user moves a marker in the RCA).

If the RCA creates a pair of markers (loop or mute region), the RCA should set the end marker one sample after the last sample to include (this means this is different than with tags SL/SR). For instance, if the RCA wants to put markers around a file made of 1000 samples, the right marker should be notified at position 1000, not 999.

The following types of markers can be created:

Mute Start Marker: tag is MRK[MS]
Mute End Marker: tag is MRK[ME]
Loop Start Marker: tag is MRK[LS]
Loop End Marker: tag is MRK[LE]
Region Start Marker: tag is MRK[RS]
Region End Marker: tag is MRK[RE]
Generic Marker: MRK[G] or simply MRK
A command is formatted as follows:

1) When sent by the RCA:

TAG + optional name + position

Examples:

MRK=MyMarker(1000)

MRK=(1000)

2) When sent by the Host:

TAG + optional name + position + unique ID (in parenthesis if name is supplied).

Examples:

MRK=MyMarker(1000,144)

MRK=(1000,144)

The unique ID is a 32-bit value which is attributed by the host (and only the host) to the marker once for all. This value usually changes between sessions, but remains the same for the life time of a given marker (its value is attributed when the marker object is created in the host memory). Markers belonging to different files could have a same ID.

Note: the MRK commands are ignored if the wave file is currently being processed.

Special commands:

1) MRK=-1 erases all markers that were remotely created.

2) MRK=? requests WaveLab to send a description of all its markers that were not remotely created. Only the types of markers described above are notified (Mute, Loop, Generic). If there is no marker, no message is sent by WaveLab. This can be useful to set a number of markers in WaveLab and then "import" them in the RCA.

SAVED

Save notification

This message is only sent in the direction WaveLab to RCA. It is sent after an audio file was saved, if and only if the SYNC mode was previously set for this file.

The format is:

SAVED=X where X is the (possibly new) file name.

Example 1: In WaveLab, the file Z:\A.WAV is "saved as" Z:\B.WAV, then the sent message is:

Z:\A.WAV|SAVED=Z:\B.WAV

Example 2: In WaveLab, the file Z:\A.WAV is "saved in place", then the sent message is:

Z:\A.WAV|SAVED=Z:\A.WAV

SYNC

Synchronisation command

It is possible to set WaveLab in a "sync" mode where it will notify the RCA about certain events.

Format: the value after the tag is the top-level window class name to which messages must be sent.

Example: SYNC=ABC

Then WaveLab will send messages to the window found by the API call "FindWindow("ABC", 0)" (which also means it won't happen anymore when the RCA quits).

Each file in WaveLab has an independant "Sync" status. For example, if the RCA wants to be notified about events happening in both files A and B, then the SYNC command must be sent to WaveLab for both files A and B. The SYNC command only needs to be sent once for a given file.

WaveLab uses exactly the same message format to notify the RCA. The following events are notified by WaveLab:

Edit Cursor Position: whenever the edit cursor moves to a new position, WaveLab sends a CRS command.

Saved file: see the SAVED tag description.

Marker change: whenever a marker that was remotely created is modified in WaveLab (name or position), then WaveLab sends a message that describes all markers in this file (but only those markers that were remotly created).

Note: when WaveLab or the RCA receives a command (eg. "move edit cursor"), then it should not send the same command back (to obviously prevent command loops).

Examples

Example of a complex command line

const char* cmdLine =

"k:\\Z Test Folder\\This is a bass1.wav"

"|SL=10000 |SR=20000 |CRS=15000 |CH=2"

"|TCK=384|BPM=155.561 |SGN=5/16 |FRM=29.97"

"|MRK=My Marker1(60000)"

"|MRK=My Marker2(70000)"

"|MRK=My Marker3(80000)"

"|MRK=My Marker4(90000)"

"|MRK=My Marker5(100000)"

"|MRK=My Marker6(110000)"

"|MRK=(120000)  |MRK=110000"

;

RCA example

#include <windows.h>

#include <string.h>

#include <stdio.h>
// just for this test application

#include <conio.h>
// " " "

// The location of "WaveLab.Exe" must be defined by the user, once for all.

// It can also be found in the registry at:

// HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\App Paths\WaveLab.exe

// Here, we just use a constant for the purpose of the test.

const char* k_wavelabExe = "d:\\wavelab16\\wavelab.exe";

// Example Wave file to be opened

const char* k_cmdLine =

"p:\\Welcome.wav"

"|SL=10000 |SR=20000 |CRS=15000 |CH=2"

"|TCK=384|BPM=155.561 |SGN=5/16 |FRM=29.97"

"|MRK=My Marker1(60000)"

"|MRK=My Marker2(70000)"

"|MRK=My Marker3(80000)"

"|MRK=My Marker4(90000)"

"|MRK=My Marker5(100000)"

"|MRK=My Marker6(110000)"

"|MRK=(120000)  |MRK=110000"

;

void main()

{


printf("Type any key to launch or activate WaveLab and open a wave file.\nPress Escape to Quit.");


while (getch() != 27)


{



// Check if a WaveLab instance is already running



const char* k_winClass = "WaveLabFrame";



HWND hwnd = FindWindow(k_winClass, 0);



if (hwnd)



{




// First of all, activate WaveLab's frame window (optional)




SetForegroundWindow(hwnd);




if (IsIconic(hwnd))





ShowWindow(hwnd, SW_RESTORE);
// must come before...




// Inter-process message: notify WaveLab to open the Wave file




COPYDATASTRUCT data;




data.dwData = 0;




data.cbData = strlen(k_cmdLine) + 1;




data.lpData = (char*)k_cmdLine;




// Use SendMessage(), not PostMessage() !




SendMessage(hwnd, WM_COPYDATA, 0, (LPARAM)&data);



}



else



{




char buf[1000];




strcpy(buf, k_wavelabExe);




// add a special command line parameter that says:

// "don't restore last window layout"




strcat(buf, " |_NR_");




WinExec(buf, SW_SHOWNORMAL);
// run first




HWND hwnd;




int max = 100;




do




{
// loop until WaveLab's main window appears





hwnd = FindWindow(k_winClass, 0);





if (hwnd)






break;





Sleep(100);




}




while (--max >= 0);




if (hwnd)




{


// wait some more, for secure initialisation of WaveLab





Sleep(1000);





COPYDATASTRUCT data;





data.dwData = 0;





data.cbData = strlen(k_cmdLine) + 1;





data.lpData = (char*)k_cmdLine;





// Use SendMessage(), not PostMessage() !





SendMessage(hwnd, WM_COPYDATA, 0, (LPARAM)&data);




}



}


}

}

Edit Cursor moves in RCA and must also move in Wavelab

Example: RCA sends:

"k:\\Piano Saxo.wav"

"|SYNC=ABC"
// "SYNC" not required if already notified for this file

"|CRS=100000";

Edit Cursor moves in WaveLab; must also move in RCA

Example: WaveLab sends:

"k:\\Piano Saxo.wav"

"|CRS=100000";

Audio Region is remotely created by RCA in Wavelab

Example1: RCA creates a loop region in WaveLab:

"k:\\Piano Saxo.wav"

"|SYNC=ABC"

"|MRK[LS]=1000"

"|MRK[LE]=2000";

Example2: RCA creates two mute regions in WaveLab:

"k:\\Piano Saxo.wav"

"|SYNC=ABC"

"|MRK[MS]=0"

"|MRK[ME]=1000"

"|MRK[MS]=2000"

"|MRK[ME]=1000000";

Audio Region is updated by WaveLab and RCA gets notified

Exactly as above example.

1
1

